Loading...
HomeMy WebLinkAbout203 Red Coach CtIf Permit #:_ Rl2 . ff---�.. L._J b Address: �Q Description of Work: Historic District: ,6�yo�-haw;., S CITY OF SANFORD PERMIT APPLICATION J ec S Date: o r Total Square Footage �0 Zoning:Val+ ue: Work: S f S�Od O d Permit Type: Building Electrical Mechanical Plumbing Fire Sprinkler/Alarm Pool Electrical: New Service — # of AMPS Add ition/A Iteration Change of Service Temporary Pole Mechanical: Residential Non -Residential Replacement New (Duct Layout & Energy Calc. Required) Plumbing/ New Commercial: # of Fixtures # of Water & Sewer Lines # of Gas Lincs Plumbing/New Residential: # of Water Closets Plumbing Repair — Residential or Commercial Occupancy Type: Residential Commercial Industrial Construction Type: # of Stories: # of Dwelling Units: Flood Zone: (FEMA form required ) Contractor Name & Address: Phone & Fax: Bonding Company: Address: Mortgage Leader. . Address: Architect/Eagineer: Address: State License Number: Contact Person: Phone: Phone: Fax: Application is hereby made to obtain a permit to do the work and installations as indicated. 1 certify that no work or installation has commenced prior to the issuance of a permit and that all work will be performed to meet standards of all laws regulating construction in this jurisdiction. I understand that a separate permit must be secured for ELECTRICAL WORK, PLUMBING, SIGNS, WELLS, POOLS, FURNACES, BOILERS, HEATERS, TANKS, and AIR CONDITIONERS, etc. OWNER'S AFFIDAVIT: l certify that all of the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zoning. WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT. NOTICE: In addition to the requirements of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies, or federal agencies. Acceptance of permr fication Ural 1 will no S Name of the property of the requirements of Florida Lien Law, FS 713. 8/ Dat Signature of Contractor/Agent 1 Mate of F&gblE BLMTUN C IhPA1SS10N * DD 188491 February 25.2107 ptPIRFS: Co ,,,NOTARY R N.A. —. Print Contractor/Agent's Name Date Signature of Notary -State of Florida Date ally f5iown to M or Contractor/Agent is Personally Known to Me or _ Produced IDr1 . ?/0 _Produced ID 4?( % � APPROVALS: FD ENG: BLDG: I. �[�� Special Conditions: 6v-- sK top4d Q -o fr, ';Rev 03/2006 CITY OF SANFORD BUILDING DIVISION OWNEWBUILDER AFFIDAVIT CONSTRUCTION CONTRACTING Owners of property when acting as their own contractor and providing direct, onsite supervision themselves of all work not performed by licensed contractors, when building or improving farm outbuildings or one -family or two-family residences on such property for the occupancy or use of such owners and not offered for sale or lease, or building or improving commercial buildings, at a cost not to exceed $25,000, on such property for the occupancy or use of such owners and not offered for sale or lease. In an action brought under this part, proof of sale or lease, or offering for sale or lease, of any such structure by the owner -builder within 1 year after completion of same creates a presumption that the construction was undertaken for purposes of sale or lease. This subsection does not exempt any person who is employed by or has a contract with such owner and who acts in the capacity of a contractor. The owner may not delegate the owner's responsibility to directly supervise all work to any other person unless that person is registered or certified under this part and the work being performed is within the scope of that person's license. For the purposes of this subsection, the term "owners of property" includes the owner of a mobile home situated on a leased lot. To qualify for exemption under this subsection, an owner must personally appear and sign the building permit application. State law requires construction to be done by licensed contractors. You have applied for a permit under an exemption to that law. The exemption allows you, as the owner of your property, to act as your own contractor with certain restrictions even -though you do not have a license. You must provide direct, onsite supervision of the construction yourself. You may build or improve a one -family or two-family residence or a farm outbuilding. You may also build or improve a commercial building, provided your costs do not exceed $25,000. The building or residence must be for your own use or occupancy. It may not be built or substantially improved for sale or lease. If you sell or lease a building you have built or substantially improved yourself within 1 year after the construction is complete, the law will presume that you built or substantially improved it for sale or lease, which is a violation of this exemption. You may not hire an unlicensed person to act as your contractor or to supervise people working on your building. It is your responsibility to make sure that people employed by you have licenses required by state law and by county or municipal licensing ordinances. You may not delegate the responsibility for supervising work to a licensed contractor who is not licensed to perform the work being done. Any person working on your building who is not licensed must work under your direct supervision and must be employed by you, which means that you must deduct F.I.C.A. and withholding tax and provide workers' compensation for that employee, all as prescribed by law. Your construction must comply with all applicable laws, ordinances, building codes, and zoning regulations. do hereby state that I am qualified and capable of performing the requested onstruction involved with the permit application filed. I will assume full responsibility as an Owner/Builder Contractor, and will personally supervise all work allowed by law on the permitted structure. O errilder Signature Date M sa L, Aos T/�-,e Print O erBuilder Name DEBBIE BLANTON MY COWISSION # DD 188491 Signature of Notary—State of FloridaEXPIRES: February 25,20w L-OWOG�4440TARY rL volory Discount Assoc. Do. Owner is Personally Known to Me or has Produced ID I CARRIAGE COVE REQUEST FOR DIPROVEVIENT TODAY'S DATE: —OA� $ , a O O to PROJECTED DATE WHEN IMPROVEMENT IS TO TAKE PLACE: TYPE OF IMPROVEMENT: oa_.,,t d?rl MATERIALS TO BE USED FOR IMPROVEMENT: 6LQu4 PERSON/COMPANY INSTALLING:.G'.Q�o� /riC PLANS REVIEWED �T CITY OF SANFORD RF-f,I Room ie e i � r � 1 � I p t t' I DR] VF NOTE: IT IS THE RESPONSIBILITY OF THE HOMEOWNER TO NOTIFY THE UNDERGROUND UTILITY LOCATER (1-8004324770) PRIOR TO THE START -OF ANY WORK. SIGNATURE OF RESIDENT: 'YA�fZL PRINT NAME OF RESIDENT: 12 LOT #: �? 0 3 & al _ APPROVAL OF DATE OF APPR NO WORK IS 7 i N4k- s --r A e ICE 9 Mobile Home Hardware 1,' ,. Invoice 1461 Seminola Blvd K r Date Invoice#. = • Casselberry; FL 32707 ';-.':�r1 • rs A '1 " 1r{ i '�+e ' Terms: , f , { 13815 c y�r v r, r (407).6958/17/2006 t- ► ' j a J 407 314-1984 (John) No... ' Terms: Project Bill TO Richard Emond ► ' 407 314-1984 (John) r it h • ' �, vr. rc r '. t x l i 1 Quantity ^ Descnpbon � I "'• E' . r > I - + J. � ,'fern ' ,.T No... ' Terms: Project .. it h Quantity ^ Descnpbon 'Rate Amount 1 ..v .r.. 18 3" riser roof pans B/S w/w 2 rib' cr 10'. x, ' 's 28.50_ ` 513.00T 3 Bronze 3" x. 3" fluted post a� `12' with 4" notch n 44.51 133.53T 1 Bronze 2" x 4" SMB•na, 18' r ' ''� :3 77.04 77.04T 3 Brown 3" skirt Qa 12' 12.80 38.40T 1 white extruded header n -I8' : ;; :;: '. 59.00 59.00T Check # 1693 t4 ` -500.00 Seminole County Sales Tax 7.00% 57.47 , k 1 ' O=- r f�'f f -•• 1 tj r It Total $378.44 January 01, 2006 LAWRENCE E. BENNETT, P.E. P.O. BOX 214368 SOUTH DAYTONA, FL 32121 386-767-4774 TU ALL BUILDING DEPARTMENTS Re: Master File Engineering "ALUMINUM STRUCTURES DESIGN MANUAL" 2004 edition & 2006 edition Dear Building Official/Plans Examiner, This is to certify that the following contractor/company is hereby authorized to use my 2004 ed "ALUMINUM STRUCTURES DESIGN MANUAL" during the year 2006. When we publish and distribute the 2006 ed of the "ALUMINUM STRUCTURES DESIGN MANUAL", they will be authorized to use that manual for the remainder of 2006. Our authorization is based on a January to January basis requardless of the edition of the manual. This authorization also applies to contractor master file drawings, " ONE PERMIT ONLY" drawings or any "site specific" drawings that I may furnish the contractor. Peter S. Elliott Mcoile Home Hardware 1461 Seminola Blvd Casselberry, FL 32707 They are hereby added to my 2006 MASTERFILE LIST Should you have a"estions please contact me at your convenience. / / Sincerely, Lawrence/E( Benneft, P.E. #16644 General Notes and Specifications: 1. Certalr ci the .`allowing structures are designed to be married to block and wood frame structures of aced -_ate structural capacity. The contractor 1 home owner shall verify that the hest structure is in good conciuon and of sufficient strength to hold the proposed addition. 2. If the owner or contractor has a question about the host structure, the owner (at his own expense) shall hire an architect, engineer, or a certified home inspection company to verify host structure capacity 3. The structures designed using this section shall be limited to a maximum projection of 20' from the host structure. Freestanding structures shall be limited to the maximum spans and size limits of component parts. Larger than these limits shall have site specific engineering. 4. 'n r ply t menls !additions involvin ile ured homes: a. Structures to be placed adjacent to a mobile I manufactured home built prior to 1994 shall use "fourth wall construction" or shall provide detailed plans of the mobile / manufactured home along with addition plans for site specific review and seal by the engineer. This applies to all utility sheds, carports, and I or ee� t er structures to be attached. b. Fourth wall construction means the addition shall be free standing with only the roof flashing of the two units being attached. The most common "fourth wall construction' is a post & beam frame adjacent to the mobile / manufactured home. The same span tables can be used as for the front wall beam. All fourth wall frames shall have knee braces on both fourth wall frame and outer wall frame @ each end en attaching to a slab. If post is set in concrete isolated footing, no knee trace is r c. For mobile / manufactured homes built after 1994, structures may attached, provided the project follows the plan provided in this manual. The contractor / owner shall provide verification that the tructural system of the host structure is adequate for the addition to be attached. d. Any atlachmen at e s e han from a mobile I manufactured home wait shall require site specific engineering. The 20' is measured from the mobile / manufactured home to the outside of the beam wall and does not include overhang. 5. Section 7 contains span tables and attachment details for pans and composite panels. 6. When using TEK screws in lieu of S.M.S., longer screws must be used to compensate for drill head. 7. If the mobile / manufactured home manufacturer certifies in writing that the mobile home may be attached to, then a "fourth wall" is NOT required. 8. If posts are set in concrete and the carport is attached to a host structure, knee braces are not required. 9. For existing mobile homes that have existing structures attached to them that are to be altered or added to, a fourth wall shall not be required unless the addition or alteration adds more than 50 % of the assessed value of the existing home. 10. For high velocity hurricane zones the minimum live load / applied load shall be 30 PSF. 11. Spans may be interpolated between values but not extrapolated outside values.. 12. All gutter systems in which the back of the gutter is at or above the pan rib or above the lop surface of a composite panel roof shall have a minimum 2' diameter hole in all gutter end caps. Section 2 Design Statement: The structures designed for Section 2 are attached and freestanding carports and patio covers and are considered to be open structures similar to greenhouses and agricultural buildings with a minimum live load of 10 PSF and 30 PSF for high velocity hurricane zones. Negative internal pressure coefficient is 0.00. The design wind loads used are from ASCE 7-98 Section 6.5, Analytical Procedure and are in compliance with the 2004 Florida Building Code. The loads assume a mean roof height of less than 30; roof slope 0' to 25' (+/- 10') for attached structures or gabled free standing carports and 0' to 10' for freestanding covers; I = 0.77. All pressures shown in the table below are in PSF (#/SF). General Notes and Specifications for Section 2 Tables: Section 2 Design Loads (#ISF) for Open or Enclosed Structures w/ Solid Roofs Wind Velocity Mono -Sloped Roof wl Open Walls (See Note 2) Attached or Gabled Freestanding Carport Roofs Enclosed Shed Walis iQverhang i Cantilever 100 M.P.H -IcI-10 .101-10 -101-12 .:u/ -3U 110-M.P.H +101-10 .101-12 •121.14 +10:-36 120 M.P.H +101-11 +101.14 +141-17 -10!-:3 123 M.P.H *101-12 •101-15 +151-18 +10/45 130 M.P.H +10/-13 -101-16 +161-19 +101-50 140A M. P. H. +101-15 +10/-19 +191-23 +101-58 1408 M.P.H +301.15 -301-19 +191-23 •301-58 150 M.P.H +301-17 +301-20 +21 /-26 +301-67 0 Note 1: Hoof and framing members of carports & patio covers are considered to be the main frame resistance components. Wind loads are listed as minus loads for roofs and plus loads for walls. To convert above wind loads to *C" Exposure loads multiply by 1.4. Note 2: Roof loads shall not be less than 10 PSF for 100 through 130 MPH zones or less than 30 PSF for 140 and 150 MPH zones. "C" exposure conversion factors can only be used to convert from 120 MPH to 140 & 150 M.P.H. Conversion Table 2A for Section 2 Roof Beam Spans Conversion Table 28 for Section 2 Roof Beam Spans for Structures w/ Mono -Sloped Roof & Open Walls for Attached or Gabled, Freestanding Carport Roofs From 170 MPH'Wrnd 7- In ntherc e: nnc„re -R' From 120 MPH Wind Zone to olherc- av­,,.0 -F- Wind Zone (MPH) Applied Load I#/Sq. Ft.) Deflection (d) Bending (b) 100 10 1 03 1.05 110 10 1.03 1.05 120 11 1.D0 1.00 123 12 0.97 0.96 130 13 0.95 0.92 140A 15 0.90 0.86 1408 30 0.72 0.61 150 1 30 0.72 0.61 Conversion Table 2C for Section 2 for Enclosed Shed Walls From 120 MPH Wind Zone to others; exposure 'B" Wind Zone Applied Load Deflection Bending (MPH) (#ISq. Fl.) (d) (b) 100 12 1.12 1.19 110 14 1.07 1.10 120 17 1.0D 1.00 123 18 0.98 0.97 130 19 0.96 0.95 140A 8 B 21 0.90 O,Ba 150 26 O.B7 0.81 Coversion Table 2E Conversion Based on Mean Height of Structure for Open Structures w/ Solh Mean Host Deflection Bending Structure Height 'd' b' 0.15' 0.94 0.91 15'.21 ' 0.92 0.88 30' EXISTING HOST STRUCTURE ANCHOR WITH HEADER CHANNEL FOURTH WALL FRAME (IF REQUIRED) SHADING TYPE II DENOTES INTERIOR POST MAX. ROOF AREA (SEE BEAM SPAN TABLES FOR ATTACHED COVERS) Yllnd Zane IMPH) Applied Load (#ISq. Ft.) OeFlection Id) Bending (b) 100 10 1.12 1.18 110 12 1 05 108 120 14 1.00 100 123 15 0.98 0.97 130 16 0.96 0.94 140A 19 0.90 0.66 1408 30 0.78 0.68 150 30 0.78 0.68 Conversion Table 2D for Section 2 Roof Beam Spans for Overhang / Cantilever (All Building Types) From 120 MPH Wind Zone to others; exposure -8- Wind Zone Applied Load I Deflection Bending �- WOOD FRAME SHED W/ 2 x 4 PRESSURE TREATED PINE i - PLATE ANCHORED TO CONCRETE W/ 1/4" CONCRETE FASTENERS @ 4'-0" O.C. L W Q r / A2=�A1= A3= W14 W/2 W/4 + O.H. ,(IW = PROJECTION FROM HOST STRUCTURE ROOF PANELS AND CONNECTION DETAILS � (SEE TABLES SECTION 7) ,, \ EXISTING HOST STRUCTURE FRONT WALL BEAM (SELECT 'UFROM BEAM TABLES FOR ATTACHED COVERS) MID -SPAN BEAM (SELECT 'L' FROM BEAM SPAN TABLES FOR ATTACHED COVERS) SHADING TYPE I DENOTES EXTERIOR POST ROOF AREA (SEE TABLE 2.2.1 AND/OR TABLE 2.2.2) MIN. 3" x 3" x 0.060" THRU-BOLTED TO HEADER POST ANCHOR TO CONCRETE (SEE DETAIL REQUIRED POST) (TYP.) EXISTING HOST STRUCTURE -� FOURTH WALL FRAME (IF REQUIRED) /7 7/7-T7 V) / W < - / / / / / / > i / / / / /V ANCHOR WITH HEADER CHANNEL (SEE ROOF CONNECTION DETAILS SECTION 7) FRONT WALL BEAM (SELECT 'L FROM BEAM SPAN TABLES FOR ATTACHED COVERS) MID SPAN BEAM (SELECT 'L' FROM BEAM SPAN TABLES FOR ATTACHED COVERS) SELECT BEAM (SEE BEAM SPAN TABLES FOR ATTACHED COVERS) POST SHADING TYPE II (SEE TABLE 2.2.1 AND OR TABLE 2.2.2) SHADING TYPE I (SEE TABLE 2.2.1 AND / OR TABLE 2:2.2) A2= Al = A3 - W/4 W/2 PROJECTION DOUBLE CARPORT WITHOUT CENTER POST - PLAN VIEW SCALE: 1/8" = 1'-0" 3' RECEIVING CHANNEL MID -SPAN BEAM ANCHORS W/ (3) EACH #8 (SEE BEAM SPAN TABLES FOR S.M.S. @ 12" O.C. (SEE ROOF CONNECTIONROOF ATTACHED COVERS) PANELS DETAILS SECTION 7) �- (SEE TABLES SECTION 7) HOST STRUCTURE -d POST TO BEAM FOURTH WALL FRAME (SELECT FROM TABLE 2.3) (IF REQUIRED) SIZE AND INOR TTABLE o- (O E2.2-11 AND 2.2.2) PROJECTION VARIES SEE FOOTING DETAILS DOUBLE CARPORT WITHOUT CENTER POST - ELEVATION VIEW SCALE: 1/8" = V-0" 64" .6 �, 4e��- .3 PERMIT#. 3iSl POST TO BEAM (SEE TABLE 2.3) PIANS REviEWED MID -SPAN SEBEAM SPAN STAB LES FOR OF SiNFOR� ATTACHED COVERS) FOURTH WALL FRAME v POST SIZE AND SPACING (IF REQUIRED)Al, o (SEE TABLE 2.2.1 AND / OR TABLE 2.2.2) SEE FOOTING DETAILS OFFICE DOUBLE CARPORT WITH CENTER POST SCALE: 1/8" = V-0" 07-08-2004 PURSUANT TO PROVISIONS OF THE FLORIDA DEPARTMENT OF HIGHWAY SAFETY & MOTOR VEHICLES DIVISION OF MOTOR VEHICLES RULE 15C-2, THE SPAN TABLES, CONNECTION DETAILS, ANCHORING AND OTHER SPECIFICATIONS ARE DESIGNED TO BE MARRIED TO CONVENTIONALLY CONSTRUCTED HOMES AND / OR MANUFACTURED HOMES AND MOBILE HOMES CONSTRUCTED AFTER 1984. THE DESIGNS AND SPANS SHOWN ON THESE DRAWINGS ARE BASED ON THE LOAD REQUIREMENTS FOR THE FLORIDA BUILDING CODE 2004 EDITION. JOB NAME: ADDRESS: DRAWING FOR ONE PERMIT ONLY �o • � N D_ r^ til • N J n _1 n E 7 LL n H O o r -r- V) n rn V C,la 4-J V b U� u LL 1 _I LN0m 11711 -LO tv ry t t0 W 11 x�(g CC to tow c ■C121 3: n LL = u 00 J M r- 1_,^m o Gi E F- ca v ri .1 eO w t. H _J Q Z) � Z > �w O Z O U CD U Z_cnwZOQ EC/) - 0_J h- P Z W co _J W = W - W 0 U) W -'T N Wrl-Q0Z W _J U o N O 0 H Z)EE>-� W 0 Q W , 0 CO LL � fn :E O T_o U Z_ N r Q J Q ti W Q N ^ ~ N r7 J LL `r C ;> j.- C Lu amu? 4 0 m C0 (D 0721, f- v� LluD W LuU) n U_ ' 1._i Y m a U W ^ W LL C ZNW O ~ > 2 m > W J d11 / / SHEET 1 2004 OF 10 FOURTH WALL FRAME (IF REQUIRED) BEAM SELECT "L' FROM BEAM SPAN TABLES FOR ATTACHED COVERS USE 'At' = W/2 + O.H. EXISTING HOST STRUCTURE 00 NOT BLOCK FIRE EXIT WINDOW i I I I t T T T T Alternating Studs 1 T t T t T _j tY APPLIED LOAD FROM w TABLE 4.3 =AP 2"x _ BEAM OR PURLINS _ SELECT'L' FROM BEAM SPAN TABLES FOR ATTACHED COVERS USE'A7 = W/2 + O.H. ALTERNATE BEAM LOCATIONS _ 2' x 3' MIN. (SEE TABLE 2.2.1 AND I OR TABLE 2.2.2) `- --'W' VARIES O.H. SINGLE CARPORT - PLAN VIEW 3' RECEIVING CHANNEL SCALE: 118"= 1'-0' ANCHORS W/ (3) EACH #8 S. M. S. @ 12' O. C. (SEE ROOF ROOF PANELS CONNECTION DETAILS ,-� _ - (SEE TABLES SECTION 7) SECTION 7) 77 I I I 1 Al = W/2 A2 W/2+O.H. it _PROJECTION�� r1 FOURTH WALL FRAME (IF REQUIRED) EXISTING HOST STRUCTURE POST TO BEAM (SELECT FROM TABLE 2.3) POST SIZE AND SPACING (SEE TABLE 2.2.1 AND/ OR 2.2.2) VARIES SEE FOOTING DETAILS SINGLE CARPORT - ELEVATION VIEW SCALE: 1/8'= 1:-0' EXISTING HOST STRUCTURE SEE CONNECTION DETAILS >_ (SECTION 7) I I 12' x PAN (SEE TABLES SECTION 7) USE'W' TO SELECT PAN FOR REQUIRED SPAN 'W VARIES CARPORT WALL SECTION SCALE: 1/8" = 1'-0" POST AND BEAM (DETAILS AND TABLES SECTION 2) FOR FRONT BEAM USE: A = W / 2 -OVERHANG FOOTING AND CONNECTION (DETAILS SECTION 2) NOTES: 1. SHED IS FRAMED WITH FOURTH WALL (IF REQUIRED) OR ATTACHED TO HOST, MAXIMUM FLOOR AREA 200 SO. FT., IF FLOOR AREA IS GREATER THAN 200 SQ. Fr. USE SECTION 4, ATTACH SHED OR ROOM WALL TO HOST STRUCTURE W/ 1/4'x 3-1/4" TAPCONS @ 16' O.C. FOR MASONRY OR #16d COMMON @ 16' O.C. OR #10 x 3.1/2' FOR WOOD OR 910 x 2-112" S.M.S. FOR V x 2" ALUMINUM OR #10 x 4" S.M.S. FOR 2 x 2 ALUMINUM 2. SHEDS AND UTILITY ROOMS BUILT UNDER SECTION 2 SPECIFICATIONS SHALL BE LIMITED TO 16 FT. IN ROOF SPAN. 3. ALL WOOD FRAMING AND SHEATHING CONNECTIONS SHALL BE IN COMPLIANCE WITH THE FLORIDA BUILDING CODE 2004 CHAPTER 23. TABLE 2306.1 OR AS NOTED. Nailing Schedule: Connection Easton' Number I Spacing Wall Shealhing V2' or Less 08 Common 6' O.C. Edqes and 12.O.C. Field Top or Sote Plate to Stud A. End Nod 1 016 Common 2 B. Toe Nail 1 98 Comrtron 2 PAN OR COMPOSITE PANEL /SFr TAR[ FS SECTION 71 SEE CONNECTION DETAILS (SECTION 7) FOURTH WALL FRAMING WHERE REQUIRED EXISTING HOST STRUCTURE 2 x 4 LUMBER #2 S.P.F. (MIN.) OR 2"x 2' ALUMINUM MAY BE SUBSTITUTED WITHOUT HURRICANE CLIPS SEE TERMITE SHIELD FOR WOOD STRUCTURES ON EXISTING CONCRETE DETAIL IF TOP OF SLAB IS LESS THAN 6- FROM GRADE UTILITY SHED WALL SECTION SCALE: 1/8' = 1'-0' HURRICANE CLIPS FOR WOOD 2 x 4 TOP PLATE @ ROOF (DOUBLE TOP PLATE IF LENGTH OVER 12' OR IF PLATE IS SPLICED) TOP PLATE P.T. OR W/ VAPOR BARRIER Lal ALUMINUM ROOF SHEATHING: 7/16' O.S.B. OR 1/2' PLYWOOD W/ STUDS 24' O.C. OR STRUCTURAL GRADE THERMAL PLY W/ STUDS @ 16' O.C. 2 x 4 PRESSURE TREATED PLATE W/ 3/8" x 4-1/2" CONCRETE ANCHORS @ 4'-0' O.C. (SEE SLAB DETAILS) - ALUMINUM WALL FRAMING MAY BE USED IN LIEU OF WOOD FRAMING. SEE TABLES FOR MAXIMUM -STUD HEIGHTS. - _` _ _ „_ • _ _ ___ _ .. __ c O.S.B. OR 1/2" COX NAILED 6' 0. C. EDGES AND 12' 0. C. FIELD WALL UPLIFT EXAMPLE SCALE: 1/8'= 1'-0' CALCULATE UPLIFT'U' IN # / L.F. FOR 120 M.P.H. ZONE ='AP x'LW' 'AP = 27 #1 SO. FT. 'LW' = 10'-0' 'U'=27#/SO. FT. x 10'xCf=270#/L.F. 'REQUIRED ANCHOR SPACING CAN BE FOUND BY DIVIDING ANCHOR CAPACITY BY THE UPLIFT VALUE PREVIOUSLY DETERMINED. EXAMPLE: FOR AN H-3.0 CAPACITY = 415 # 1270 # / L.F. = SPACING OF 1.537 FT. THUS, STUDS AT TYPICAL SPACINGS RECEIVE ANCHORS AS FOLLOWS Anchor Schedule Stud Spacing H 2.SA Spacing t T T T T Alternating Studs 1 T t T t T j APPLIED LOAD FROM w TABLE 4.3 =AP UOVERHANG ='O.H: = 2'-0- �A/L 29 r PROJECTION ='P = 12'-0' LOAD WIDTH ='LW' = N 'P 12 +'OH' = 10'-0' H O OPTIONAL SHEATHING: 7/16' c O.S.B. OR 1/2" COX NAILED 6' 0. C. EDGES AND 12' 0. C. FIELD WALL UPLIFT EXAMPLE SCALE: 1/8'= 1'-0' CALCULATE UPLIFT'U' IN # / L.F. FOR 120 M.P.H. ZONE ='AP x'LW' 'AP = 27 #1 SO. FT. 'LW' = 10'-0' 'U'=27#/SO. FT. x 10'xCf=270#/L.F. 'REQUIRED ANCHOR SPACING CAN BE FOUND BY DIVIDING ANCHOR CAPACITY BY THE UPLIFT VALUE PREVIOUSLY DETERMINED. EXAMPLE: FOR AN H-3.0 CAPACITY = 415 # 1270 # / L.F. = SPACING OF 1.537 FT. THUS, STUDS AT TYPICAL SPACINGS RECEIVE ANCHORS AS FOLLOWS Anchor Schedule Stud Spacing H 2.SA Spacing 12' O.C. Alternating Studs 16' O.C. Each Stud H 6.0 Each Stud NOTES: Allowable Uplift Per Anchor Simpson Uplift Rating H 2.SA 6000 H 3.0 8 5.0 4550 H 6.0 9150 MST16' 1.26W MSTC26' 2.7600 neauer ... oeam soap.. Wind Load Conversion Table: For Wind Zones/Regions other than 120 MPH (Tables Shown), multiply allowable loads and root areas by the ennvprsinn Gcfm Wind Applied Conversion Region Load Factor 100 19 1.19 110 23 1.08 120 27 1.00 123 29 0.97 130 32 0.92 140 37 0.85 ISO 43 0.79 1. Above example can be used to calculate uplift and anchor spacing for any applied load or wind load. 2. For headers use 1/2 the header span x (he # / LF value calculated from the example above.' 2 x _ WOOD STUD 1/2- x 6' EXPANSION BOLT OR 8- L -BOLT @ 48' O.C. 2x_PRESSURE TREATED PLATE EXISTING CONCRETE I EXTERIOR SIDING APPROVED SUB -SIDING OR STRAPPING MIN. 0.024' ALUMINUM COIL OR 26 GA GALVANIZED STEEL UNDER SOLE PLATE. AND OVER SIDING 8 VAPOR BARRIER m00 iI- CLN Z 1 -c-n GRADE MASTIC TERMITE SHIELD FOR WOOD STRUCTURES ON EXISTING CONCRETE SCALE: 2' = V-0' KNEE BRACE (REQUIRED) 2' x 3' x 0.050' SELECT BEAM FROM BEAM SPAN TABLES FOR ATTACHED COVERS SEE BEAM SPAN TABLES FOR ATTACHED COVERS (AFTER COMPUTING W) POST SIZE (SEE TABLE 2.2.1, 2.2.2 AND / OR TABLE 2.3) SIDE VIEW SINGLE BAY OR DOUBLE BAY CARPORT FOURTH WALL FRAME SCALE: 1/8'= l' -W t� o � � N Q. ^' T . ry v J t`"o 0 C=VI `^ o+ U � m � tl:l.3 4-1 b v v trait L) UJ:3 W LL I vt O L p GGo u L 19ry t t0 W O_ X - R1 to w c C^LLw I v co J A r— Ln0d ,r d ry f- :3 a r`n•, 03 �v "'1 J 00 W n F ad J Q > O 0- Z O Cn z(nwz0Q O C) C3 Z Wfn J W Q=W-wo co ( 00 it W_F- QOZ WJU0_N LO j�0QU O W Q (/J LL Cl) W it _ O QZ N Z) Q J Q F. W 2 N IZ cn r' to LL 0Q^ C .- N ZWan 1D (L 0 WE m COO X: r , ]LLjm W 1 a--0.. N W o=' U WCL ,WU. C 2 N F Z m W U r y rAL SHEET 2� 09-15-2004 OF � 0 REMOVE VINYL SIDING AND SOFFIT ON THE WALL AND INSTALL SIMPSON CS -16 COIL STRAP OR EQUAL FROM TRUSS / RAFTER TO BOTTOM OF DOUBLE TOP PLATE JOIST @ EACH TRUSS/RAFTER THE FLOOR, WALL, AND ROOF THE FLOOR, WALL. AND ROOF SYSTEM ARE THAT OF MOBILE SYSTEM ARE THAT OF MOBILE I MANUFACTURED HOME -, / MANUFACTURED HOME NAIL STRAP W/ 16d COMMON @ TRUSS RAFTER AND PERIMETER JOIST SCREW COIL STRAP TO SHEATHING W/ #8 x 1' OECK SCREWS @ 16' O.C. VERTICALLY REPLACE VINYL SIDING PROVIDE NEW 4', 6' OR 8' x 16' CMU PIER AND SOLID FOUNDATION BLOCK @ F -0 - MAX. O.C. ALONG ATTACHMENT WALL THE FLOOR, WALL, AND ROOF SYSTEM ARE THAT OF MOBILE I ►AAMI IrArTI tarn unUl= 4STALL NEW 48' OR 60' UGER ANCHOR PER RULE 5C @ EACH NEW PIER. 4STALL 1/2' CARRIAGE BOLT HRU PERIMETER JOIST AND TRAP TO NEW AUGER NCHOR- TYPICAL WALL SECTION FOR ATTACHMENT TO MOBILE / MANUFACTURED HOME SCALE: 1/4' = 1'-0' REMOVE VINYL SIDING AND SOFFIT ON THE WALL AND INSTALL SIMPSON CS -16 COIL STRAP OR EQUAL FROM TRUSS / RAFTER TO BOTTOM OF DOUBLE TOP PLATE JOIST @ EACH TRUSS/RAFTER THE FLOOR, WALL. AND ROOF THE FLOOR, WALL, AND ROOF SYSTEM ARE THAT OF MOBILE / MANUFACTURED HOME SYSTEM ARE THAT OF MOBILE / MANUFACTURED HOME NAIL STRAP W/ 16d COMMON @ TRUSS RAFTER AND PERIMETER JOIST SCREW COIL STRAP TO SHEATHING W/ 98 x 1' DECK SCREWS @ 16' O.C. VERTICALLY REPLACE VINYL SIDING ALTERNATE: 4' x 4' P.T.P. POST W/ SIMPSON 4' x 4' POST BUCKET INSTALLED PER MANUFACTURERS SPECIFICATIONS TOP 8 BOTTOM THE FLOOR. WALL. AND ROOF SYSTEM ARE THAT OF MOBILE / LAAMI IrArTI tern unl.Ar 4STALL NEW 48' OR 60' tUGER ANCHOR PER RULE 5C @ EACH NEW PIER. 4STALL 1/2' CARRIAGE BOLT 'HRU PERIMETER JOIST AND ;TRAP TO NEW AUGER tNCHOR ALTERNATE WALL SECTION FOR ATTACHMENT TO MOBILE / MANUFACTURED HOME SCALE: 3/8' = V-0' RIBBON FOOTING SCALE: 314' = V-0' Minimum Ribbon Footing STUD WALL OR POST Wind a/ xPost Anchor Stud' Zone G48 O.C. Anchors 100-12 • 10 • is 1'-0' ABU da SP1 e8' O.C. 130 _'T la.A • to - 1g 1•-0- ABU as SP1 32' O.C. 1408-150 • 30 • 20 1'-0' I ABU as 1 SPI @ 16'0.C. Maximum 27 projection from last structure. For stud walls use 1/T x 8' L•Bolts @ 48'0.C. and 2' square washers to attach sob plate to fooling. Stud anchors shall be at the sole date only and coil strap shall lap over the top plate on to the studs anchors and straps shall be per manufacturers specifications. REMOVE VINYL SIDING AND SOFFIT ON THE WALL AND BEAM SPAN LENGTH "A' FOR TABLE 2 EQUALS THE LARGER OF: A 1 = W, A2 = W/2 - O.H. MINIMUM �—W�W� U4 ROOF N OVERHANG w J m VARIES A2 A2 I VARIES � J A2� 1�A2 z CLin I 1 j� CENTER FRAME I END FRAME L Go / / / / j� DOUBLE CARPORT SCALE: 1/8' = V-0' BEAM IF REQUIRED FOR 'SLE KNEE BRACING 1/2 12 �— KNEE BRACE — 'W FOR BEAM SIZE 'W FOR BEAM SIZE— IZE " MINIMUM SLOPE SHALL BE 112' PER 12' EXCEPT FOI` 0.026' PANS FOR WHICH THE SLOPE SHALL BE 3/4' PER 12' FOR SPANS EXCEEDING 17-0' OR MANUFACTURERS RECOMMENDED SLOPE " SEE BEAM SPAN TABLES FOR FREE STANDING STRU END VIEW DOUBLE CARPORT (GABLED) SCALE: 1/8' = V-0' >� PAN OR COMPOSITE w/a con - PANEL ROOF SHADING DENOTES MAXIMUM ROOF AREA FOR COLUMNS AND FOOTING SINGLE CARPORT SCALE: 1/8"= 1'-0' SLOPE 1/2 .- 12 'W' FOR BEAM SIZE " AFTER COMPUTINGW. LARGEST VALUE POST SIZE AND SPACING PER TABLE 2.2.1 AND / OR TABLE 2.2.2 NOTE: KNEE BRACES ARE REQUIRED IF POSTS ARE NOT SET IN CONCRETE FOOTING 1N SINGLE CARPORT SCALE: 118'= 1'-0' INSTALL SIMPSON CS -16 COIL RIDGE BEAM STRAP OR EQUAL FROM (SEE BEAM SPAN TABLES II TRUSS I RAFTER TO BOTTOM FOR GABLED COVERS USE OF DOUBLE TOP PLATE JOIST W/2 FOR LOAD WIDTH) i @ EACH TRUSS / RAFTER THE FLOOR, WALL, AND ROOF POST (SEE TABLE 2.2.1 is SYSTEM ARE THAT OF MOBILE AND / OR TABLE 2.2.2) THE FLOOR, WALL, AND ROOFT/ /MANUFACTURED HOMpUMS REVIEWED W SYSTEM ARE THAT OF MOBILE � ` / MANUFACTURED HOME NAIL STRAP W/ 16d COMMON ��fiY OF S&%FORD GABLE CARPORT FRONT ELEVATION @ TRUSS RAFTER AND SCALE: 1/8"= 1'-0' PERIMETER JOIST SCREW COIL STRAP TO LOAD WIDTH FOR CENTER BEAM SHEATHING W/ 08 x 1' DECK (SEE TABLE 2.1.1 AND / OR TABLE 2.1.2) SCREWS @ 16' O.C. VERTICALLY REPLACE VINYL SIDING 8- •L' BOLT @ 32' O.C. TYPE III FOOTING OR 16'x 24' RIBBON FOOTING W/ (2) 050 BARS, 2,500 PSI CONCRETE THE FLOOR, WALL, AND ROOF SYSTEM ARE THAT OF MOBILE / MANUFACTURED NOME KNEE WALL W/ 2 x 4 P.T.P. BOTTOM PLATE. STUDS b DOUBLE TOP PLATE NAIL PER TABLE 2306.1 FLORIDA BUILDING CODE EACH STUD SHALL HAVE A SIMPSON SP -1 OR EQUAL - SHEATH W/ 1/2' P.T. PLYWOOD NAILED W/ #8 COMMON 6 O.C. EDGES AND 12' O.C. FIELD OR STRUCTURAL GRADE THERMAL PLY FASTENED PER THE MANUFACTURERS SPECIFICATIONS STRAP SIMPSON COIL STRAP OVER SHEATHING ALTERNATE WALL SECTION FOR ATTACHMENT TO MOBILE / MANUFACTURED HOME SCALE: 318'= V-0' RIDGE CAP 3' x 3' CENTER CROSS BEAM SEE BEAM SPAN TABLES FOR ATTACHED COVERS USE (1.14 4 O.H.) FOR END FRAMES AND L/2 FOR CENTER CROSS BEAMS) NOTCH POST TO RECEIVE BEAM WITH THRU-BOLTS (PER TABLE 2.3) WITH LOCK NUT TOP AND BOTTOM U4 W MONO -SLOPED U4 ROOF N OVERHANG m � J VARIES A2 A2 z a to i SIDE BEAMS' f ENO BEAMS I 1 j� CENTER FRAME SINGLE CARPORT SCALE: 1/8"= 1'-0' SLOPE 1/2 .- 12 'W' FOR BEAM SIZE " AFTER COMPUTINGW. LARGEST VALUE POST SIZE AND SPACING PER TABLE 2.2.1 AND / OR TABLE 2.2.2 NOTE: KNEE BRACES ARE REQUIRED IF POSTS ARE NOT SET IN CONCRETE FOOTING 1N SINGLE CARPORT SCALE: 118'= 1'-0' INSTALL SIMPSON CS -16 COIL RIDGE BEAM STRAP OR EQUAL FROM (SEE BEAM SPAN TABLES II TRUSS I RAFTER TO BOTTOM FOR GABLED COVERS USE OF DOUBLE TOP PLATE JOIST W/2 FOR LOAD WIDTH) i @ EACH TRUSS / RAFTER THE FLOOR, WALL, AND ROOF POST (SEE TABLE 2.2.1 is SYSTEM ARE THAT OF MOBILE AND / OR TABLE 2.2.2) THE FLOOR, WALL, AND ROOFT/ /MANUFACTURED HOMpUMS REVIEWED W SYSTEM ARE THAT OF MOBILE � ` / MANUFACTURED HOME NAIL STRAP W/ 16d COMMON ��fiY OF S&%FORD GABLE CARPORT FRONT ELEVATION @ TRUSS RAFTER AND SCALE: 1/8"= 1'-0' PERIMETER JOIST SCREW COIL STRAP TO LOAD WIDTH FOR CENTER BEAM SHEATHING W/ 08 x 1' DECK (SEE TABLE 2.1.1 AND / OR TABLE 2.1.2) SCREWS @ 16' O.C. VERTICALLY REPLACE VINYL SIDING 8- •L' BOLT @ 32' O.C. TYPE III FOOTING OR 16'x 24' RIBBON FOOTING W/ (2) 050 BARS, 2,500 PSI CONCRETE THE FLOOR, WALL, AND ROOF SYSTEM ARE THAT OF MOBILE / MANUFACTURED NOME KNEE WALL W/ 2 x 4 P.T.P. BOTTOM PLATE. STUDS b DOUBLE TOP PLATE NAIL PER TABLE 2306.1 FLORIDA BUILDING CODE EACH STUD SHALL HAVE A SIMPSON SP -1 OR EQUAL - SHEATH W/ 1/2' P.T. PLYWOOD NAILED W/ #8 COMMON 6 O.C. EDGES AND 12' O.C. FIELD OR STRUCTURAL GRADE THERMAL PLY FASTENED PER THE MANUFACTURERS SPECIFICATIONS STRAP SIMPSON COIL STRAP OVER SHEATHING ALTERNATE WALL SECTION FOR ATTACHMENT TO MOBILE / MANUFACTURED HOME SCALE: 318'= V-0' RIDGE CAP 3' x 3' CENTER CROSS BEAM SEE BEAM SPAN TABLES FOR ATTACHED COVERS USE (1.14 4 O.H.) FOR END FRAMES AND L/2 FOR CENTER CROSS BEAMS) NOTCH POST TO RECEIVE BEAM WITH THRU-BOLTS (PER TABLE 2.3) WITH LOCK NUT TOP AND BOTTOM U4 U2 U4 — — — — — — — — — — — — — — —=F— — RIDGE BEAM i SIDE BEAMS' f ENO BEAMS CENTER BEAMS i� CENTER FRAME I END FRAME L s� 110 KNEE BRACES REQUIRED IF POSTS ARE NOT SET INTO CONCRETE FOUNDATION ' FOR SIDE BEAM SPANS SEE BEAM SPAN TABLES FOR ATTACHED OR GABLED COVERS (USE U4 « O.H. FOR SIDE BEAMS) DESIGN IS BASED ON SOLID GABLE ENO PANELS. IF ANY SIDE PANELS ARE USED IN DESIGN, SITE SPECIFIC ENGINEERING IS REQUIRED. GABLE CARPORT SIDE ELEVATION SCALE: 118"= V-0' • -I m -4 , C N ry i J LA. 0 0 C=VI rn u � V m CJ> > > LL p O 1--- 1✓ N r•i N W d - x lE 1,< w III •r u ^ J • Yro r— at ,r d m Nv cc J aO w ^F e0 Q w Z > 20 O z 0 C9 U N ZcnwZ0< DDD2iHt— Z WV) J W Fa r� W m W N w —I-QOZ W J U C N 0 P a! } atls=�- W 0 N W to W v O Q Z N Q j Q W Z N ^ ~ N { : � M in J pQ� c Uz CZ �- to in C'�u/>^o (D CL CLOC[3 (0 Ozifil- m^ W j v to 5 tii 67 W wvOiz-^ J O O N UL''m°a U w<wu- C Z r w OOr Wm J tea/ U SHEET 3 09-15-2004 1 OF l 10 FASTENERS (PER TABLE 2.3) PAN ROOF PANEL KNEE BRACE TO POST DETAIL - BEAM PERPENDICULAR TO ROOF SCALE: 2"= V -W ------------------------------- PAN OR COMPOSITE PANEL ROOF BEAM IV 7 CONNECTION = - START OR ENO OF BEAM SPAN CENTER OF BRACE 2' x 3' x 0.050' MINIMUM KNEE BRACE (SEE TABLE 2.3) KNEE BRACE REQUIRED IF POST NOT SET IN CONCRETE FOOTING KNEE BRACE NOT REQUIRED FOR ATTACHED STRUCTURES COLUMN BRACE ® r---------- CONNECT KNEE BRACE TO GABLED FRAME COLUMN AND BEAM WITH ® ® SEE TABLES FOR BEAM SIZE ® C1 CHANNEL, OR GUSSET PLATE, FRAME WALL W/ MIN. (2)3/8- x .- (SEE SECTION 7) FASTEN WITH S.M.S. AT 2' LAG SCREWS PER SIDE OR EACH CONNECTION POINT \ TO CONCRETE W/ (2) 1/4' x, PER TABLE 2.3 — — — — — — — — — — ANCHOR PER DETAIL FOR PAN RECEIVING CHANNEL THRU i --T-. INTERNAL ANGLE OR U -CLIP OR COMPOSITE PANEL BOLTED TO POST W/ THRU CONNECTIO HOST STRUCTURE MASONRY (SEE TABLE 2.3 FOR NUMBER START OR E FOR NUMBER OF BOLTS AND COLUMN ® - OF BEAM S 0 I ® - (SELECT FASTENERS FROM KNEE BRACE NGTH CENTER w ~ ® ` BRACE o w 2' x 3' x 0.050' MINIM M KNEE BRACE (SEE TABLE 2. KNEE BRACE REQUIRED IF POST NOT SET IN CONCRETE ® ® I CONNECT KNEE BRACE O PRIMARY BEAM (SEE SPAN TABLES, SECTION 2) FOOTING WALL W/ MIN. (3) 318"x 2' LAG SCREWS OR TO CONCRETE OR MASONRY WALL W/ (3)1/4' J COLUMN AND BEAM WI x 2-1/4' ANCHORS OR ADD (1) CHANNEL ® ANCHOR PER SIDE FOR EAC KNEE BRACE NOT REQUIRED / CHANNEL. CHANNEL, OR GUSSET TE . OR GUSSET FOR ATTACHED STRUCTURES LARGER THAN 3' FASTEN WITH S.M.S. AT CH AND ROOF PROJECTION FROM CONNECTION POINT HOST LESS THAN 20' (PER TABLE 2.3) KNEE BRACE TO POST DETAIL - BEAM PERPENDICULAR TO ROOF SCALE: 2"= V -W ------------------------------- PAN OR COMPOSITE PANEL ROOF BEAM IV 7 CONNECTION = - START OR ENO OF BEAM SPAN CENTER OF BRACE 2' x 3' x 0.050' MINIMUM KNEE BRACE (SEE TABLE 2.3) KNEE BRACE REQUIRED IF POST NOT SET IN CONCRETE FOOTING KNEE BRACE NOT REQUIRED FOR ATTACHED STRUCTURES COLUMN BRACE ® r---------- CONNECT KNEE BRACE TO GABLED FRAME COLUMN AND BEAM WITH ® Of silaoto 0.050"U' CHANNEL,'H' ® C1 CHANNEL, OR GUSSET PLATE, FRAME WALL W/ MIN. (2)3/8- x .- (SEE SECTION 7) FASTEN WITH S.M.S. AT 2' LAG SCREWS PER SIDE OR EACH CONNECTION POINT \ TO CONCRETE W/ (2) 1/4' x, PER TABLE 2.3 BEAMS MAY BE ANGLED FOR GABLED FRAME COLUMN NOTCHED TO SUIT HEADER -� ANCHOR PER DETAIL FOR PAN OR COMPOSITE PANEL PANS OR COMPOSITE PANELS FOR NUMBER OF BOLTS AND PER SECTION 7 SIZE OF POST (SEE TABLE 2.3) BEAM AND POST SIZES (SEE TABLES SECTION 2) SIDE NOTCH POST TO BEAM CONNECTION SCALE: 2' =1'-0' BEAMS MAY BE ANGLED FOR— r---------- SCALE: 2' = 1'-0' GABLED FRAME w BEAM TO WALL CONNECTION: (2) 2' x 2" x 0.060' Of silaoto ROOF PANEL C1 FRAME WALL W/ MIN. (2)3/8- x .- (SEE SECTION 7) 2' LAG SCREWS PER SIDE OR TO CONCRETE W/ (2) 1/4' x, 1-3/4' x 1-3/4' x 0.063' — — — — — — — — — — ANCHOR PER DETAIL FOR PAN RECEIVING CHANNEL THRU i --T-. OR COMPOSITE PANEL BOLTED TO POST W/ THRU BOLTS FOR SIDE BEAM HOST STRUCTURE MASONRY (SEE TABLE 2.3 FOR NUMBER I FOR NUMBER OF BOLTS AND OF BOLTS)I ® - SIZE OF POST (SEE TABLE 2.3) 0 I ® - (SELECT FASTENERS FROM BEAM AND POST SIZES (SEE TABLES SECTION 2) COLUMN NOTCHED TO SUIT CENTER NOTCH POST TO BEAM CONNECTION SCALE: 2"= V-0' DOUBLE 2' x 8' S.M.B. (4) 3/8' x 5' THRU BOLTS @ BEAM AND Q EACH POST 1/4" x 4' x 2d' GUSSET PLATE EACH SIDE OF BEAM —F------------ w ROOF PANEL (SEE SECTION 7) CL� wm 11 O ANCHOR (SEE DETAIL FOR PAN OR COMPOSITE PANEL) 4"x4'x0.125'POST KNEE BRACE TO POST DETAIL - BEAM PARALLEL TO ROOF SCALE: 2' = V-0' DOUBLE BEAM TO POST CONNECTION SCALE: 2' = 1'-0" TO BEAM SIZE AND # OF BOLTS (SEE TABLE 2.3) 2'x S.M.B. NOTE: FLASHING AS NECESSARY TO PREVEAW- WATER INTRUSION BOLT HEADER JGH POST AND ANCHOR 010 x 3/4' S.M.S. Q 6' EACH END AND @ 24- V. BRACE ]VIREO POST ALTERNATE 4TH WALL -BEAM CONNECTION DETAIL- — SCALE: 2'= 1'-0" ANGLES. INTERNAL 'U' CHANNEL OR EXTERNAL V CHANNEL EACH SIDE OF CONNECTING BEAM W/ SCREWS (PER SECTION 9) PRIMARY / FRAMING BEAM (SEE SPAN TABLES SECTION 2) MINIMUM NUMBER S.M.S. 3/4' LONG REQUIRED EQUAL TO BEAM DEPTH (SEE SECTION 9) EXTRUSIONS W/ INTERNAL SCREW BOSSES MAY BE CONNECTED W/ (4) #10 x 1-1/2' INTERNALLY SECONDARYBEAM/ PURLINS(SEE SPAN TABLES SECTION 2) BEAM TOBEAM CONNECTION DETAIL SCALE: 2' = 1'-0' PLh%S REVIEWED BEAM TO WALL CONNECTION: (2) 2' x 2" x 0.060' Of silaoto EXTERNALLY MOUNTED ANGLES ATTACHED TO WOOD C1 FRAME WALL W/ MIN. (2)3/8- x .- 2' LAG SCREWS PER SIDE OR TO CONCRETE W/ (2) 1/4' x, ® 2.1/4' ANCHORS OR MASONRY WALL ADD (1) ANCHOR PER ? HOST STRUCTURE MASONRY w J ® SIDE FOR EACH INCH OF BEAM OR FRAMED WALL 0 DEPTH LARGER THAN 3' (SELECT FASTENERS FROM w ~ ® ` SECTION 9 TABLES) o w ALTERNATE CONNECTION: LL (1) 1-3/4' x 1.3/4"x13/4'T/8' INTERNAL UCANNELIA ® ATTACHED TO WOOD FRAME PRIMARY BEAM (SEE SPAN TABLES, SECTION 2) WALL W/ MIN. (3) 318"x 2' LAG SCREWS OR TO CONCRETE OR MASONRY WALL W/ (3)1/4' ANGLE OR RECEIVING x 2-1/4' ANCHORS OR ADD (1) CHANNEL ANCHOR PER SIDE FOR EAC INCH OF BEAM DEPTH LARGER THAN 3' BEAM TO WALL CONNECTION DETAIL SCAT F- 7" = 1'.0' � J Q > O 0 z o N ZcnWZ0Q zw0pHl— LLJ Q= W cn J C C W cn D 03 It N 8 Zo w J U C N Q'pEE F— = C _ W C (n W (n w O _ O QZ 04 H � Q J Q U -I ~ ^ ~ N L,L � J LL O<^ C 2O' C Za^`Q U co a0��o C13 O OxM� Wjv'o ao w It WW O- J Q.Ov U w ''�°a U Wa�LL C ZNF Zm 3 W -i O J �a SHEET 09.15.2004 1 OF 10 t _ ALUMINUM/STEEL COLUMN 'U' CHANNEL ANCHORS (SEE SECTION 9) (SEE SECTION 9 FOR CONNECTIONS) CONCRETE SLAB OR FOOTING ° CONCRETE ANCHORS (SEE SECTION 9) POST TO CONCRETE CONNECTION INTERNAL OR EXTERNAL RECEIVING CHANNEL SCALE: 2'= 1'-0" t ALUMINUM / STEEL COLUMN 2"x 2" WITH WALL THICKNESS ANCHORS (SEE SECTION 9) EQUAL TO OR GREATER THAN COLUMN WALL CONCRETE SLAB OR FOOTING a CONCRETE ANCHORS (SEE SECTION 9) POST TO CONCRETE CONNECTION INTERNAL OR EXTERNAL ANGLE CLIPS SCALE: 2' = 1'-0" - — ATTACHMENT DETAILS --•-- - --- -• • -- '— SHOWN REQUIRE DIAGONAL UNIFORM LOAD ALUMINUM /STEEL COLUMN BRACING FOR ATTACH PANELS TO CHANNEL IX > FREE-STANDING COVERS W/ (2) #8 x 1/7 S.M.S. EACH INTERNAL EXTRUDED UNIFORM LOAD ALUMINUM BASE OR BREAK Q FORMED U -CLIP WITH WALL CORROSION RESISTIVE STEEL = EQUAL TO OR GREATER THAN THRU BOLT PER SCHEDULE POSSTT WALL L CONCRETE SLAB OR FOOTING o . CONCRETE ANCHORS (SEE UNIFORM LOAD SECTION 9) POST TO CONCRETE CONNECTION TUBE COLUMN BASE SCHEMATIC INTERNAL BASE SCALE: 2'= 1'-0' TOP OF GRADE COMPACTED BACK FILL "P IS THICKNESS OF REQUIRED POST 3' x 3' POST (SEE TABLE) (2) 7 x 2' x ANGLE OR (1) U CHANNEL x'r 318"x 3-1/7 BOLT 80 I.B. 2500 PSI CONCRETE PRE -MIX 3' EXTRUDED ALUMINUM BASE AND BURIED FOOTING CONNECTION —SCALE: V= 1'-0" POST IN CONCRETE 11040 BAR 17 LONG POURED CONCRETE (REFER TO TABLE 2.4) t� 3' x 3' POST TURN BOLTED* TO �— ANCHOR RISER 2.3/4' x 2-3/4'x 2-1/7 LONG x 1/8" TUBING WELDED CONNECTION I I FASTEN (SEE SECTION 9) 12' x 12' x 1/4' PLATE 3.1/7 CONC. SLAB POST MAY BE FILLET WELDED DIRECTLY TO BASE PLATE BASE ANCHOR CONNECTOR ISOLATED FOOTING / FOR POST TO SLAB CONNECTION SCALE: 2' = V-0' SCALE: 2"= 1'-0' 2'-0' MIN. 3.112' (4' NOMINAL) BEFORE SLOPE —ALL SLABS ell Z TYPE FLAT SLOPE / NO FOOTING 0-2' / 12' (1) #50 BAR CONT. 8' TYPE 11 MODERATE SLOPE FOOTING 2"/ 12"- 1'-10' TYPE 111 STEEP SLOPE FOOTING V-10' Notes: 1. The foundations shown are based on a minimum soil bearing pressure of 1,500 psf. Bearing capacity of soil shall be verified, prior to placing the slab, by field soil test or a soil testing tab. 2. The slab / foundation shall be cleared of debris, roots, and compacted prior to placement of concrete. 3. No footing other than 3-1/2' (4' nominal) slab is required except when addressing erosion until the projection from the host structure of the carport or patio cover exceeds 20'-0". Then a minimum of a Type If fooling is required. All slabs shall be 3-1/7 (4" nominal) thick. 4. For wood frame utility sheds the minimum depth of the fooling shall be 10' for Type II footing and 14' for Type III footing with 6' Min. exposed above grade. 5. Monolithic slabs and footings shall be minimum 2,500 psi concrete with 6 x 6 - 10 x 10 welded wire mesh or crack control fiber mesh: Fibermesh 0 Mesh, InForcel e3^' (Formerly Fiberrnesh MD) per maufacturer's specification may be used in lieu of wire mesh. 6. If local building codes require a minimum footing use Type II footing or footing section required by local code. Local code governs. RECEIVING CHANNEL SLAB -FOOTING DETAILS SCALE: 1/2' = 1'-W 12' ALUMINUM PANEL ROOF r— (SEE TABLE 2.5) RECEIVING CHANNEL 12' ALUMINUM PANEL (SEE TABLE 2.5) ALUMINUM UTILITY SHED WALL WITH DOOR ELEVATION VIEW SCALE: 1/8"= 1'4' RECEIVING CHANNEL 17 ALUMINUM PANEL ROOF /— (SEE TABLE 2.5) ALUMINUM UTILITY SHED WALL ELEVATION VIEW SCALE: 118"= 1'-0' RECEIVING CHANNEL 12' ALUMINUM PANEL (SEE TABLE 2.5) MAX. SHED FLOOR AREA 200 SO. FT. PAN TO WALL CHANNEL (3) #8 x 112" PER PAN RECEIVING CHANNEL PAN TO WALL 2' x 2' x 0.044" BRACE FOR GREATER PAN HEIGHT (SEE TABLE 2.5) 3-1/2' CONCRETE SLAB SECTION THROUGH UTILITY SHED SCALE: 1/8' = 1'-0' #8 x 1/2' S. M. S. INTO EACH RISER @ PANEL ENDS TOP AND BOTTOM PAN 12' RISER PANEL (SEE TABLE 2.5) • BOTTOM CHANNEL ANCHORED TO SLAB W/ 1/4.0 x 1' EMBEDMENT EXPANSION BOLTS @ 24' O.C. OR CONCRETE SCREWS PAN WALL CONNECTION DETAIL UNIFORM LOAD l a� A B SINGLE SPAN CANTILEVER UNIFORM LOAD l� 1 A B C 2 SPAN PAN ROOF (SEE TABLE 2.5) PAN WALL 1/4'0 x 1-1/4' EMBEDMENT EXPANSION BOLTS OR EQUAL DRIVE PINS @ 24' O.C. m� � ry . ry Jin J LL^'o 0 V b v v of T C../,7 3> LL �f Lry 0 W I_ fa D V N I W W a. X�0 W roiu c IIID '3' 3 w E III E C n LL W r J Y r— —0.0 CO ,r d ry H m � J W nF SCALE: 1/8' = 1' ad J Q UNIFORM LOAD (n D ATTACH PANELS TO CHANNEL IX > z LLI 2 W/ (2) #8 x 1/7 S.M.S. EACH C3 UNIFORM LOAD PANEL @ EACH END Q SCALE: 1/8' = 1' UNIFORM LOAD A B 1 OR SINGLE SPAN UNIFORM LOAD A B C D 3 SPAN UNIFORM LOAD L l d 1 A B C D E 4 SPAN NOTES: PLANS REVIEWED 1) 1 = Span Length CITY OF SANFORD a = Overhang Length 2) All spans listed in the tables are for equally spaced distances between supports or anchor pants. 3) Hollow extrusions shall not be spliced. 4) Single span beams shall only be spliced at the quarter points and splices shall be staggered. SPAN EXAMPLES FOR SECTION 2 TABLES SCALE: N.T.S. v '-- lA zCO W ZOQ 000pHI— Q=LL)J03 W D m O N W J U C3 N O XP:DE}I— ca_ OJ W 0 fn LL (n W o () Z N Q J Q W zN a J � J h LL OQn u0n C W>�m N to 0- C) CIO CO Oxn- r• W j � m W W°Z- J OmOX W m a - U WewLL C 2NuJ `' 2m W Y J va. } r 1� EAL SHEET 5/' 09-15-2004 OF 10 (3.00 L) D (2.33 L) C (1.67 L) B(1.33L) A (0.67 L) ALLOWABLE BEAM SPLICE LOCATIONS SCALE: N.T.S. SINGLE SPAN BEAM SPLICE d = HEIGHT OF BEAM @ 1/4 POINT OF BEAM SPAN BEAM SPLICE SHALL BE ALL SPLICES SHALL BE MINIMUM d -.50" STAGGERED ON EACH d-.50' d -.50 - SIDE OF SELF MATING BEAM PLATE TO BE SAME in + + + + + + + + THICKNESS AS BEAM WEB ^ I PLATE CAN BE INSIDE OR OUTSIDE BEAM OR LAP CUT + + + + + + + + _ DENOTES SCREW PATTERN _ a NOT NUMBER OF SCREWS FASTENER SIZE, NUMBER HEIGHT 2 x (d -.50") LENGTH AND SPACING (SEE TABLE) TYPICAL BEAM SPLICE DETAIL SCALE: 1' = 1'-0' Minimum Distance and Spacing of Screws Screw Six ds Edge To Center Center To Center Gusset Plate Thickness (in.) 2ds in. 2-1/2ds in. Beam Six Thickness 98 0.16 3/8 7116 Tx 7x 0.055' x 0.120• " ,1116' = 0.063' 910 0.19 318 1/2 2" x W x 0.072;,x2 .224" 118'=0.125" 912 0.21 7/16 9/16 2• x 9' x 0.072 0.224• 1/8"=0.125' 914 or 114• 0.25 112 518 2' x 9" x 0.082' x 0.306" 11a" = 0.125" 5116• 0.313 5/8 314 1 2'x 10' x 0.092'x 0.369' 1/4'=0.25' ' Refers to each side of splice. " Use for 2• x 4" and 2' x 6" also Note: 1. AN gusset plates shall be a minimum 5052 H-32 Alloy or have a minimum yield of 23 ksi. �-4 M -4 ^ O , � N , N v C., -j 4J ro v v vroi U M 7 Cri a LL t an 40 C=O � c *'0 aro+ I.— L VN a W d -x�ei ro w c IIIE=—I LL o III r ro t �00 J to Q M 130 v 00 J tG W J od Q D Z > 2p OV z O Z(AwZ0Q O wp H H Z w (n Jw Q=w—LU 00m0N w�— H Q O Z w J U 0 N O X P: D E } ILLad�� JQw Q U) LL LU 2-'T _ O U Z CV Q J Q W ~ N of LL 0 C W} (D a C3 rip m O02v1� -W m W J or"ox LL 'coO = U WowLL Z N W F Z m 3 W M r. JAN' AL SHEET 09-15.2004 OF 10 T. 3 Table 2.1.1 A-110 Allowable Roof Beam Spans for Freestanding Carports or Patio Covers with Mono -Sloped* Roofs For 3 sec. wind gust for 110 MPH velocity; Using design load of 10 #ISF (36 #ISF for Max. Cantilever) ... aa.... 6n61 - T x 3" x 0.045' Hollow 2- x 3' x 0.050" Hollow Tilt Load Max. Span 'L'I(bendin9 W or deflection •d) Width (ft.) 18.2 Span 3 Span 4 Span Cantileax.ver Load Max. Span'Vilbending 'b• or deflection Nr 4 Span Cantilever Width (H.) 182 SpanK11.' 4 8'4' d 10'-3• d 10'-6' d 1'-7- d 4 8•-T d 9'-9' d 10'4' d 1'-7' d 5 7'-0' d 9'-6' d 5•g• d 1'-0• d 5 7'4• d 9'-1' d 9'-7• d 1'-0• d 6 7'- ' d 6'•11' d 5-v b 1'•5• d 6 7'-2' d 8'•7' d 8'-11' b 1'•s• d 7 64-W d V -W d 8'-5• b 1'4' d 7 6•7' d 8'-I• b F-7 b 1'4' d 8 6'•7• d 8'-2' d T•11• b 1••3• d 8 6-T d T -r b 7'•8• b 1'-3' d 9 6'-4' d 7'-0• b 7'•5• b 1•-3' d 9 6'•3' d T -Z' b 7"•3' b 1'-2' d 10 6'•T d T4• b T-1• b 1••2• d 10 6'-0• d T-1• b 6'-11' b 1'•2• d 11 5' •11' d 6'-11- b 6'•8' b 1'•2' d 11 5•-10' d 6'-10' b 6'-7• b 1•-2• d 12 F-9' d V -r b 6'•5' b 1'.1• d 12 5'-0' d I 6'-0' b 6'•J' b 1'-1- d 2' It 4" x 0.045' Hollow Tilt 2' x 4' x 0.045- Hollow Tilt 2' x 4" x 0.044' x 0.100" Sel Mating Beam 2' a 4' x 0.044" x 0.100' Self Mating Beam Load Max. S an'L•I bendin 'b' or defleetion'd' Width JR.) 11162 span 7 Span 4 Span Cantilever Load Max. Span 'VIbendi Width (k.) 1192 Span 3 Span 'b' ar deflection'ir 4 Span Cantilever 4 10' d 12'-9• d 17.0- d 1••11• d 4 12'-0' d 14'-10' d 15'-7 d 2'<' d 5 6 7 9-(r 1103 6- 1' 11'•11• b I 1'-10• d S 1'-9- d-" 6 1'-0' d �7� 10'-6' 10'-10• d 11'•1• d 1 J'-3• d 12'-T' d 2'•7 d 2'-0- d 11-11- d a -T d 5.10' b 10'.9' b 1'.7• d a . 5-r d 11'-10* d 11'-10* b 1'-10' d 9 7'-11- d 5.3• b NV:-6WI 1'-0' d 9 5.7 d 11'-4' d '11'-7 b 1'•9- d 10 71•r d 8'-9• b 9'4' b 1'.6' d 10 6-10* d 10'-11' b to -7• b 1'-9- d 11 T-5 d 8'-4' b 8'-10' b 1'-5• d 11 e••r d 10'-5- b 10'.1- b1'12 10'$• b 1'41' d T-2- b T-11• b 8'4' 0 1'-5• d 12 8'4' d 5-11- 0 I 5-0• b 1'-7' d 2" x 5" x 0.050' x 0.100' Self Mating Beam • 11 2"x 6' x 0.050"x 0.120' Self Mating Beam 7'-11' It Load -Max. Span'L•I(bendin b' or deflection 'd-1 Width (f4) 192 Span 3 Span 4 Span Cantilever Load Max. Span'L'/(bendi Width (k.) 192 Span 3 Span 'b' or deflection'd') x. 4 Span Cantilever 4 14'-11' d 18'-5• d 78-10* d 7-11- d 4 17'5 d 21'-7• d 21'-11' d 3'4• d 5 13'-10* d 17'•1• d 174•5' d 2'-0' d 5 16%2' d 20'-0' d 20'-5• d 3'-2' d 6 1741' d IVA' d 16'•5• d 2'-6' d 6 IV -7 d 18'-10' d 191•3' d 7-11' d 7 12'-5' d 15'•3' d 15'-7' d 2'•5' d 7 14'-6' d 17'-11' d 18'•1' b Z-10' d 6 11'-10• d 14'-7' d 14'-0• b 2'•3' d a 13'•10* d 17'•1 d 16'•11- b 2'-0' d 9 11'-5- d 14•-1' d 134•10- b 7.2' d 9 13'4' d 16'•5 d 15'-11' b 7-7' d 10 10'.11- d 13'-7• b 13'-1• b 7.1' d 10 17.10• d I 115'-0• b 1 15'-7 b 1 7d 11 19-W d .11• 17 b 17.6• b Y•1• d 11 17.6• d 14--11• b 14••5• b 7•s• d 12 10'4' d iz4' b 11'•11- b 1'-11• d 1 12 1 17-1' d 1 14'4' b 13'•10* b Y4' d • Mono -Moped rods include gables where the slope of the roof is less than 1' in 11'. Notes: 1. Move spans do not indude length of knee brace. Add horizontal distance from upright to center of brace to beam connection to Ow above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 A-120 Allowable Roof Beam Spans for Freestanding Carports or Patio Covers with MonoSloped• Roofs For 3 sec. wind gust at 120 MPH velocity; using design load of 11 NSF (43 #ISF for Max. Cantilever) Alu.nlnum All- 6069 TI 2' x 3" x 0.045" Hollow 2• x 3- x 0.050" Hollow Tilt Load Max. Span'01bendin 'b' or def ection'tr Width (eLl 182 Span 3 Span 4 Span Cantiler Load Max. Span'VI bending b' or deflection'd' Max.Max Width (ft.) 182 Span 3 Span 4 Span Cantilever tilever 4 8'-1' d 9'-11• d 10'-g' d 1'•6' d 4 7'-11' d 9'-9' d 9'-11' d 1'-0• d 5 7'-0' d 9'-3' d 9'-5- d 1••S• d 5 7'4• d 9'-1' d 9'-3' d 1'-5- d 6 7'-00 d Fs' d ala, b 1'4' d 6 F-11' d 8'•7' d 8'-6' b 1.4• d 7 64-W d 8•-3' d 8'•1' b 1'-3' d 7 6•7' d 8'-I• b 7'-10' b 1'-3• d 6 6•-54 7'•9' b' 7'-6 b 1•-2' d 8 F-7 d T -r b 1'4' b 1'-2' d 9 6'•7 d 7'4• b T-1' b T-2• d 9 6'•7' d T -Z' b 6'-11' b 1'-7 d 10 5'-11' d6'-11' b 6'-9' b 1'•1• d 10 5'-10" d CAW b 6'- 7' b 1•-1' d 11 5'-5 d b 6'-5- It 1'A 1 11 5'•8• d 5'-0' b 6'-3• b 1'•I' d 121-5--7- d' 6'4' b 6'•7 b 1 12 1 5'-0' it I 6'•7 b 1 5'-11• b 1'-0- d 2" x 4• x 0.045' Hollow Til 2' x 4' x 0.045- Hollow Tilt 2' x 4' x 0.044" x 0.100' Self Mating Beam 2' a 4' x 0.044" x 0.100' Self Mating Beam Load Max. Span'L'I bendin 'b' or deflecllon'd Width (eLl tit p. - T3 Span 4 Span I Cantilever Load Max. Span'L'I bends Width (RI 192 Span 3 Span 'b' or dellection'tr 4 Span Cantilever 4 10'-0' d 12'4' d 1Z•7- d 14416 d 4 11'-0• d 14•5. d 14'-8- d 7-T d 5 54' d 11'-6' d 11'•5• b 1'-9• d 5 10'-10• d 13'4- d 13'-0• d 7-0- d 6 8'-9' d 10'.9' b 10'.5' b 1'-0- d 6 10-2" d 17.7- d 17-10' d 1•-11- d 7 64• d 5-11- b 58' b 1'-7• d 7 5-0• d 11'•11- d 12'-1' b 1'•10' d 8 T -I1' d 9'4' b 9'-0' b 144• d a 74• d 11•-S• d 11'•3' It 1'-9• d 9 7•-8' d 8'-10' b 8'-0• b 1'-5 d 9 8•-11- d 10.41- d 10'$• b 1'41' d 10 7•-5' d 8'4' 0 8'•1' b 1'•5' d 10 8'-7' d 10'-5 It 10.1• b 1'-7' d • 11 T-1' b 7'-11' It 7'-00 It 1'4' d11 11 8'4• d 5.11- b 9'•7• b 1%7' d 12 6'-10• b 7'-0' b 7'4' b 1'4• d 12 8'-1• d 9'-0• b 9'•3' b 1'.6' d 2" x 5" x 0.050' x 0.100" Self Mating Beam 2' x 6• x 0.050" x 0.120" Self Mating Beam 2' x 6" x 0.050" x 0.120" Self Mating Beam Load Max. Span'L'I bendin 'b' or delkction'd Load Max. Span 'L'/ bendin 'b' or defkction'd' Width (k.) 11162 span 7 Span 4 Span Cantilever Width (ft.) 182 Span 3 Span 4 Span Cantilever Load Max. Span'L'I berith g'b' or deflection'd:L Width (ft.) 1&2 Span 3 Span 4 Span Cantilever Wad Max. Span'Ly bendin 'b' or deflection W Width (ft.) 182 Span 3 Span 4 Span C.Mi X. ever 4 14'-5• d 1T-10' d 18'•7 d 2'•9• d 4 16•110 d 20'•11' d 21'4' d 7•2" d 5 13'-5• d 16'•7' d 16'-11• d 7.6- d S 15'-0' d 19'-5• d 191-9' d 7.11' d 6 17.7• d 15'•7' d 15'-11' d 74' d 6 144•9' d 18'-7 d 18'•7• d 2'•9• d- 7 11'•11' d 14'-10' d 14'-11' b 7.3' d 7 14'-0- d 1T4' d 17'•3• b 2'-0' d a 11'-6- d 14'•2- d 13.11' b 7•7 d a IY-5• d 16'•7' d 16-2• b 7-0• d 9 11'-0' d 13'-7' b IT -2- It 7•1' d 9 17.11' d 15'-9' b 15'•3' b 7-5' d 10 19-a- d 17-11- b 17-6• b 2'-0' d 10 12'-0• d14'•11' b 14'•5 b 74' d 11 104' d 12'4' b 11'-11' b 1'-11' d 11 17-1' d 14'•3- b 13'-9- D I 7.3• d 12 I 19-W d 11'-9' b I 11'-S' b 1'•11' d 1 12 1 11'-W d I IT -r b I 13'-T 0 I 7-7 d . Mono -sloped roofs include gables where the slope of the roof is less than t' in 12'. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 A-130 Allowable Roof Beam Spans for Freestanding Carports or Patio Covers with Mono -Sloped' Roofs For 3 sec. wind gust at 130 MPH velocity; using design load of 13 #ISF (50 #ISF for Max. Cantilever) Aluminum All- 6067 Tb 2" x 3' x 0.045" Hollow 2" x 3" x 0.050" Hollow Tilt Load Max. Span'L'llbending W or dellection'd') Width (ft.) 192 Span 3 Span 4 Span C. ritMax. Load Max. Span'L'I(bendin 'b' or deflection'd) Width (l.) 182 Span 3 Span 4 Span Cantilever 4 7'-7' d 5.5• d 5.7' d 1'-5• d 4 7'-0' d 5-3'-.d 9'•5• d 1'-5' d 5 T-1' d 8'•9' d 8'-9• b 1'4' d 5 6.11' d 8'•7' d 8'-0' b 1'4' d 6 V -a' d 6•3' d T-11' b 1••7 d 6 6'-7' d 8'•1' b TAW b 1'-3• d 7 64' d 7'-0' b 7'•5' b 1•-2• d 7 6'•3' d 7'-0• b T-3' b 1'-2- d a 6'•111 d 7'•2' b 6'•11- b 1••2• d a 5-11' d 6-11' b 6'-9- b 1--1' d 9 5'-10' d 6'•9' b 6'•6• b 1'-1• d 9 5'•5 d 6'4' b 1'-1' d 10 V.d 6'•5' O 6'-2' b 1'-1' d 10 T -W d[55' 6.0' b 1'-1' d 11 5'•5• d 6'-1' b 5'•11' b 1'-0• d 11 5'4• bS'-9• [sb b 1•-0• d 12 5'•3' b s'•10• b S'-0' D 0.11- d 12 5'•1• b5'-0' 4'-9- b b 0'•11' d 2" x 4' x 0.045" Hollow Tilt 2' x 4' x 0.045- Hollow Tilt 2- x 4" x 0.044' x 0.100" Self Mating Beam 2' a 4' x 0.044" x 0.100' Self Mating Beam Load Max. Span'121(bendin •b' or deflection'd) Width 111.) 182 Span 3 Span 4 Span Max- Cantilever Load Max. Span •L'I(bendin Width (l.) 192 span 3 Span 'b' or delleclion'd 4 Span Mas. Cantilever 4 5-0' d 11'-0' d 11'-g" b 14.9• d 4 114-0• d 13'-7• d 17-11• d 7-1' d 5 8'-9' d 10'•10' d 10'-6• b 1'-0• d S 10'.3• d 17-0• d 17-11• d 1'•11' d 6 8'•7 d 9'•11' b 9'•r b 1'.r d 6 4-0• d 11'-il- d 11'-11- b 1'•10• d 7 T-10' d 5.7 b 8'•10* b V-6- d 7 9'-2- d 11'4' d 11'.1' b 1'•9' d a 7'•6' d 6-7' b 8'4• b 1'•5 d a 8'•9' d 10'•9' b 101•4' b 1'•87 d 9 7'•3' d 8'•1' b T-10* b 1'4- d 9 9••5' d 10'•1' b 9•9• b 1'.T d 10 6'•10' b 7'-8' b 7'•5 b 1'4' d 10 8'-7 d 5-r b 5•T b 148 d 11 6'•7' b T4• b 1 T-1- b 1•-3• d 11 T-10' tl 5-2' b 8'.10' b • V -W d 12 6-3• b T-0• b 6'-9• D 1•-T d 12 7..O 0 8•-9' b F -W b 1'•5• d 2" x 5" x 0.050" s 0.100" Self Mating Beam 2' x 6• x 0.050" x 0.120" Self Mating Beam Fs 6' x 0.050' x 0.120' Self Mating Beam Load Max. Span'L'I bendin 'b' or delkction'd Load Max. Span 'L'/ bendin 'b' or defkction'd' Width (k.) 11162 span 7 Span 4 Span Cantilever Width (ft.) 182 Span 3 Span 4 Span Cantilever Load Max. S n'L'I bendin 'b' or defketton'tr Width (R) 182 Span 3 Span 4 Span Cantliever Land Max. Span 3:1 bendin 'b' or delkction •cr x. Width (ft.) 182 Span 3 Span 4 Span Cantilever 4 17-8• d 16-11' d IT -T d 7.7' d 4 15'-11' d 15.9' d 20'-7 d 3'-0' d 5 17-8• d IV -5' d 15'-11' d 7.5' d S 14'•10* d 19'-4' d 18'•9' d Z•10" d 6 11'-11- d 14'-9• d 14'-110• b 7-3' d 6 13'•11' d 17'•3- d 17'•7 b 7-W d 7 11'4' d 14'-0' d 13%9' b Z-2• d 7 17.7 d 16•-5• d 15'-11' b 2'-0' d 6 10'-10• d 13'-3' b 17.10* b 7•1' d 5 12'-8- d 15.4' b 14'-10• b 7-5• d 9 10'-5' d 12'-6' b 12'•1- b 1'-11- d 9 17-3' d 14'.6' b 14'.0' b 2'4' d 10 10'-1' d 11'-11- b 11'.6- b 1'•11' d 10 11'-9' d 13'-9' b 13'•3' b 7-3' d 11 5.9' d 11.4' b 10'.11• b 1'•10' d 11 11'-5' d 13'-1• b 17-8• It Z-7 d 12 1 Y.W. d 10'.10' b 1 10'-6• b I 1'•10' d 1 12 11•-1• d 17-7' b 12'-1• b 1 7-1' d - Mono-sbpad roofs include gables where the slope of the rod is less aWn 1' in lr. Notes: 1. Move spans do not include length of knee brace. Add horizontal distance from upright to center or brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 A-140AAllowable Roof Beam Spans for Freestanding Carports or Patio Covers with Mono -Sloped' Roofs For 3 sec. wind gust at 140A MPH velocity; using design load of 15 #ISF (58 #ISF for Max. Cantilever) 2" x 3" x 0.045" Hollow 2' x 3" x 0.050" Hallow Tilt Land Max. Span'L'/(bendin Width (k.) 1a2 Sean 7 Span 'b' or delkction'd) 4 Span Cantilever Load Max. Span'L'I bending'b' or do ection'd Width (ft.)K%25psn 3 Span 4 Span Camikver 4 T-3- d F-11' d 5-1' b 1'4' d 4 8'-10' d F-11• b 1'•3' d 5 6'-9• d 8'4' d FT b 1'•3• d 5 8'•2' d T-11• b 1'-3' d 6 6.4' d 7'$ b 7••5• b 1'-7 d 6 7.6' b 7'-3- b 1'-7 d 7 6'-0' d 7'-2' b 6'-11' b 1'-7 d 7 6'-11• b 6'-9' b 1'.1- d 6 5••9' d &-r b 6'•5• b T•I• d 6 6'-6' b '6'-3' b 1'-1' d 9 5•-r d 6'-3• b F-1' b 1'-1' d 9 6.2' b 5'-11' b 1'-0' d 5'•11' b F -W b 1'-0' d 10 s'-10• b 5'-7' b 0'-11• d 11 5'•1' b 5'-8' b 5'•6• b 0'•11• d 11 4'•11• b F-7' b 5'4• b 0'•111' d 12 4'-10* b 5••5• b 5--3• b 0'•11' d 12 4'-9- b 5.4• b 5'-2• b 0'.11• 0 2' x 4' x 0.045- Hollow Tilt 2' a 4' x 0.044" x 0.100' Self Mating Beam Load Max. Span'L'I bendin 'b' or delkction'crLoad Max. Span'L'I(bendin 'b• or deflectton'dr Width (ft.) 192 Span 3 Span 4 Span Cantilever Width (ft.) 192 Span 3 Span 4 Span Cantilever 4 541' d 11'•7 d 10'.11' b V -W d 4 10'.6• d 12'41• d IY-r d 1'•10* d S FT d IVA' b 5.9• b V-7' d 5 5-9' d 17.1' d 17-7 b 1'•10* d 6 T-11' d 5.1' b 8'•11' b 1•-6' d 6 5S d 11'4" d 11'-7 b 1'•9' d 7 7'-0• d FT b 8'•3' b 1'•5 d 7 6.7 d IW -W b 10'4' b v -a' d a 7'•T b 7••11' b T-9• b 1'4' d a 64• d 5.11' It 9'•8• b 1'-r d 9 6•9' b 7'-0' b 7'.3' b 1'4' d 9 8'-0' d 5.5' b 9'•1' b 1••6• d 10 6'-5• b 1'-2' b CAI" b 1'-3' d 10 7'-5 d 5'•11' b 8'-0- It 1'•6• d 11 6'•1• b 6'•10' b 6'•7' D 1'•J' d 11 7'-0- d V-6- b 8'•3• b 1'.5• d 12 1 5'-10' b I 6'•6• b 6'4' b 1'-2' d 1 12 T-3' d 8'•T b T-11• b 1'•5' d 2" x 5" x 0.050" x 0.100" Self Mating Beam 2' x 6• x 0.050" x 0.120" Self Mating Beam Load Max. Span'L'I bendin 'b' or delkction'd Load Max. Span 'L'/ bendin 'b' or defkction'd' Width (k.) 11162 span 7 Span 4 Span Cantilever Width (ft.) 182 Span 3 Span 4 Span Cantilever 4 13'-0' d 16.1- d 16-5' d T -V d 4 15'-3• d 18'-10' d 194•3' d 7-0• d 5 17-1• d 14'.11" d 15'•1• b 2'J' d 5 14•-2• d 17'-6' d 17'.6' b 7-0' d 6 11'•5' d 14'-1• d 13'-10' b 7.7 d 6 13'4' d 16-5• d 15'•11' b 7-0• d 7 10'-10' d 17•3' b 12'•9• b 7-0' d 7 17-8' d 15'4' b 14'•9' b 7.5' d a 10'4' d 174' b 11'•11' b 1'•11' d a 17-1' d 14'4' b 17-10' b 7.3' d 9 5.11; d 11'-8' D 11'•3' b 1'•11• d 9 11'-8' d 13'•6' b 13'-0' b 7-2• d 10 9'-7' d 11'•1' b 10'•8' 0 1'•10' d 10 11'-3' d 17-10* b 12'4• b 7.1' d 11 9'4' d 10'-T b 10'.7 b 1'-g• d 11 17-11' d 17-2' b 11'-9• b 7.1' d 12 TO b 1 10'4' b 1 5-9' b 1'-0' d 12 1 10'.5' b I ITa• b 11'•3' b 1'-1 i' d ' Mono -sloped roots include gables where the slope of the root is less than 1' in 12•. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. pIAHS REVIEWED CITY OF SANFORD m� �o � � N d m lT . N J a n 2 J LL 1• E HO O 1= N o v of U Ub..�vroi CiJ 3 ;LLo� C p L.oeoov F_ L. U' N 1 41 W E "x'e' b 45 W c � �c 3: III •r ro 1 � •rte JY r L 0.0 r E N H Nv m i4 J CO W � J to D W OV _Z O ZcnWZ0W F3 0 C3 p H m Q= W J C H W X mN a Z W i -a00 W JU O_ N Q' P:5 EE } LL:3CEOQ W 0 Cn LL W t CD _ O U Z cv H H D Q J Q F- W ~ N {.L m h J LL odd f` 20�in i W}^ 4 Q1 (�O tL :4 O row m 110 O=117 r� T- tu 5 .. /0 >Wa0 W _j WNZ= JO .O•• ULL ro w�a. C ZNtu 2m _(L J � a_ U n JANI 0.1 ZIM-AL SHEET 7A 09-15-2004 OF 10 0 Table 2.1.1 B-110 Allowable Roof Beam Spans for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust for 110 MPH velocity; Using design load of 10 #ISF (36 XISF for Max. Cantilever) al.....i.....n All.. anal TJ. 2" s 7" x 0.055- x 0.120' Self Mating Beam 2' x 7' x 0.055' x 0.120' Self Mating Beam wl Insert Load Max. Span VI(bending 'b' or denection'd) Width (X.) 192 Span 3 Span 4 Span Cantilever Load Max. 3 VI(bending W or defiection'd) X. Width (X.) 192 Span 3 Span 4 Span Cantilever 4 19•11' d 24'-7' d 25'-1' d T-10' d 4 24'-0' d 29•8' d 30'-3' d 4'-0' d 5 16-6' d ZZ -10" d 27.3' d 3'-7' d 5 274' d 27'•7' d 28'-1' d 4'-0' d 6 174-4' d 21'•5' d 214-11' d 344' d 6 20'-11' d 25'•11' d 26'•5' d 4'-0' d 7 16'-6' d 20'-5' d 20'•5' b 7-7 d 7 19'•11' d 26•-8• d 25'-1' d 3'•10' d 9 15'•9' d 19'•6' d 19'-7' b 7•1' d 8 19'•1' d 23'-7' d 24'-0' d 3'3' d 9 15'•2' d 18'-r b 17'•11' b 7.11' d 9 IF4' d 273' d 23'-1' d 3'-7' d 10 14'•8' d 17'-8- b 17'•1' b Z-10' d 10 17'-8' d 21'-10' d 22'4' d T-5' d 11 14'-2' d 16'•10' b 16'-3' b 7.9' d 11 17'-2' d 21'-2' d 21'•r d 3'4' d 12 13'•9' d 16.7' b 1544' b 73' tl 12 16'-8' d 29.7 d Z9.8 b 3'-3' d Z' x 8' x 0.072" x 0.224' Sell Mating Beam 2' x 9" x 0.07r x 0.224' Self Mating Beam Load Max. Spsn'L'I(banding Width (X.)132 Span 7 Span 'b' or deflection :EL 4 Span Cantilever X. Load Max. S n'L'/ bendin 'b' or deflection'd" Width (k.) 192 Span 3 Span 4 Span Ca tllx. 4 24'•8' d I 39.5' d 31'-1' d 4'-0- d 4 27'.0' d 33'-5' d 34'•1' d 4'-0' d 5 22'•10' d 28'•3'. d 28'•10' d 4'-0' d 5 25'-1' d 31'-0' d 31'-7' d V.0' d 6 21'-6' d 26'•7' d 27'•1' d 4'-0' d 6 23446 d 294' d 29'-9' d 4'-0' d 7 29•5' d 25-3' d 26•9' d 3'-11' d 7 27-5' d 21'-9' d 28'-3' d 4'-0' d 8 194' d 244•7 d 2644' b 3'-9' d t 21'•6' d 26.6' d 26'•8' b 4'-0' d 9 15-10' d 27.3' d 23'-3' b 3'3' d 9 29-8' d 25-6' d 25'-0 b 7.11' d 10 18'•7 d 27.5' d 22'-0' b 3'3' d 10 19'•11'd 24'-6 d 23 '-11' b T-10" d 11 17"-7' d 21'-9' d 21'•0- b 3'•5' d 11 19'4' d 23'-r b 22'-9' b 3'-9' d 12 17'•1' d 29-10' b 25 b 74' d 12 18'•9' d I 2Z•7- b j 21'•19 b 3'-6 d 2' x 9" x 0.082" x 0.306' Self Mating Beam 2' x 10' x 0.092' x 0.369' Self Mating Beam 2" a 10' x 0.092' x 0.369' Self Mating Beam Load Max. Span'L'/ bendan 'b' or deflection'll Width (X.) 192 Span3 Span 4 Span Cantilever Load Max. S Width (X.) 192 Span nil'/(bendin 'b' or deflection:d): 3 Span 4 Span CaMila- r _. Lozd-.... Max. S n 13 bendin 'b' or defleclion'd x. Width (k.) 192 Span 3 SPan 4 Spa" Cantilever 4 28'•9' d 35'3' d 36'-3' d I 4'4' 0 4 3T-8- d 41'4' d 47.6' d 4'-T d 5 263' d 32'•11' d 33'-8' d 4'-0' d 5 31'•3' d 36.6 d 39•5' d 4'4' d 6 25'-2' d 31'-0' d 31'41' d 4'-0' d 6 29'•5' d 36'4' d 37'-1' d 4'.0' d 7 23'-10' d 291-6' d 39.1' d 4'-0' d 7 27•11' d 34'•6 d 35'•3' d 4'-0" d 8 22'-19' d 28'-2' d 28'-9' d 4'-0' d a 26-9' d 33'-0' d 33'3' d 4'-0- d 9 21'-11' d 27'•1' d 27'3' b 4'-0' d 9 25'•9' d 31'4' d 37-5' d 4'-0' d 10 21'-0 d 26440 d 26•2' b 4'•0' d 10 24'-10" d 39-8' d 31'-3' dEd 19'-11' d 11 293' d 25'•4' d 24'-11' b 3'-11' d 11 24'•1" tl 29'•9' d 30'-0' b 19'4' d 12 17.11' d 24'•8' d 23'•11' D 3'-10' d 12 23'4' d 28'-10' d 28'-9' b 4'-0' d ' Mono -sloped roofs include gables where the slope of On roof is less than I'm 10. Notes: 1. Above sums do not include length of knee trace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 B-120 Allowable Roof Beam Spans for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust at 120 MPH velocity; using design load of 11 #ISF (43 #ISF for Max. Cantilever) Al -l- All- anal TA 2" x 7" x 0.055' x 0.120' Sell Mating Beam 2" x r x 0.055' x 0.120' Self Mating Beam wl Ineed Load Max. Span 'L'I(bending'b' or deflection'd) Width (X.) 162 Span 3 Span 4 Span CA Max.nilleiter Load Max. Span'L'/lbending W or deflection'd) Width (tL) 192 Span 3 Span 4 Stun CeMlever 4 17•7 d 27.10' d 24'-3' d 37 d 4 23'-3' d 21r -T d 2914' d 4'-0' d 5 IT -11'd 27.1' tl 27.6' d 3'4' d 5 21'-7' d 263' d 2T-3' d 4'-0' d 6 16.10' d 29.9' d 29.11' b 3'•2- d 6 294' d 25'-1' d 25'-7' d YAW d 7 15'-11' d 19-9' d 19'-5' b 3'-0' d 7 174' d 23'•10' d 24'4' d 3'3' d I /5'-3' d 184•10' b 18-0 b 7-11' d a 18'-6' d 27 -IT d 23'-3' d 3'3' d 9 14'3' d 17'-9' b 17'-7 It 7-9' d 9 1T-9' d 21'-11' d 22'-5' of 3'4' d 10 144•0 d 16'•10' b 16'•3' b 73' d 10 1r•2' d 21'-7 d 21'-6 d 3'•7 d 11 13'-9' d 16'-0' b 15'-6' b Z-7' d 11 16'-r d 20'-6' d 20'•7' b 3'-1' d 12 13'4- d 15'4' 0 I 14'•10' b 73' d 12 16'•0 0 17•11' 0 1 19'-9' b 741' d 2' x a" a 0.07r x 0.224" Self Mating Beam 2' x Y x 0.072' x 0.224' Self Mating Beam Load Max. Span'L'/ bendin 'b' or deflection'd Width (k.) 192 Span 7 Span 4 Span Camllever Load Max. Span'L'/(bendin 'b' er deflection V) Width (X.) 192 span 7 Span 4 Span Camilever 4 23'-10' d 29'-6' d 39-1' d 4'40 d 4 26-0 d 32'4' d 3304' d 4'-0' d 5 27.2- d 2714' d 27'-11' d 44-0' d 5 24'4' d 39-0' d 30'-8' d 4'-0' d 6 29•10' d 25'•9' 6 26-3' d 3'-11' d 6 22'-11' d 28'•3' 0 28'•10' dNY-6* 27'-0' b 7 19'•10' d 24'-6' d 24'-11' d 3'-9' d 7 21'-9' d 26'-10' d 27'-3' b 2S'-0' b a 18'•11' d 23'-5' d 23'-6' b 3'-6 d a 29.9' d 25'•8' d 25'•5' b 27.5' b 9 18'-3' d 27.6' d 22'•0 b T-5' d 9 19'•11' d 24'3' d 23'-11' b 27.1' b 10 17'•7' d 21'•9' 0 21'•0' b 3'4' d 10 174' d 27-7' b 27.9' D11 29-11' b 3'•5' d IT -W d 29-9' b 29.0' b 3'-d 11 18'3' d 27.6' b 21'-8' b12 19'-11' b 74' d 16•7' d 17.10' b 19'-0b 3'-1' d 12 18'•7 d 21'-6' b 29-9' b 19'•1' b 2" x 9" x 0.082" x 0.306' Self Mating Beam 2" x 9' x 0.082' x 0.306" Self Mating Beam 2' x 10' x 0.092' x 0.369' Self Mating Beam 2'x 10"x 0.092' x 0.369" Self Mating Load Max. Span'L'/ bendan 'b' or deflection'll Width (X.) 192 Span3 Span 4 Span Cantilever Load Max. Span VI bendin W or detlection'd x. Width (k.) 132 Span 3 Span 4 Span Ca Malever 1 4 27'•10' d 344•5' d 35'•1' d 4'-0' d 4 32'•8' d 40'4' d 41'•2' d 4'-0' d 5 25'-10' d 31'-11' d 37.7' d 4%0" d 5 30'4' d 37'•5' d 38'-2- d 4'-0' d 6 24'4' d 39.1' d 39.8' d 4'-0' d 6 26-6' d 35'-3' d 36•11' d 4'-0' d 7 23'-0 d 28'-7- d 29'-2- d 4'-0' d 7 27'-1' d 33'3' d 34'-2' of 4'-0' d 8 27.7' d 27'4' d 27'•10' d 4'-0' d a 25•11' d 37-W d 37-8' d 4'-0' d 9 21'•3' d 26'-3' d 264' b 3'•11' d 1 9 24'-11 d 39.9' d 31'•5' d 4'-W d 10 29-6' d 25'4' d 24'-11' b 3'•10' d 10 24'-1' d 29'•9' d 39-0' b 4'-W d 11 19'-11' d 24'•7' d 23'-10' b 3'-9' d 11 23'4' d 28'-9' d I 28'-8' b 4'-0' d 12 19'4' d 23'-7' D 27.10' b 1 3'3' d 1 12 1 2Z-8' d 27'-11' d 1 27'-5' b 1 4'-0' d Mono -sloped roots include gables where the slope of the roof is less than 1' in 12'. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 B-130 Allowable Roof Beam Spans for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust at 130 MPH velocity; using design load of 13 #ISF (50 #ISF for Max. Cantilever) Alumin..m All- anal Tl. 2" x 7' x 0.055' x 0.120' Sell Mating Beam 2" x 6 x 0.055" x 0.120" Self Mating Beam w/ Insert Load Max. Span'Vl(bending 'b' or deflection V) Width (k.) 132 Span 3 Span 4 Span Max. ICantilever Load Max. Span VI(bending W or deflection'd) Width (X.) 182 Span 3 Span 4 Span Cantilever 4 18'•3' d 27.6" d 27-11' d 3'•5' d 4 27-0' d 27'-2' d 27'-9' d 4'4' d 5 16-11' d 20'-11' d 2114' b 3'-0 d 5 29.5' d 25'-3' d 26•9' d 3'•10' d 6 is' -11' d 19'•8' d 19'-4' b T -W d 6 19'•3' d 27•9' d 24'•3' d 3'3' d 7 15'•1' d 18'4' b 17'•10' b 7.10' d 7 18'-3' d 22'-7' d 27-0' d 3'-5' d a 14'3- d 17'•4' b 16'•9' b 7-9' d 9 17'•6' d 21'-7' dE22'.0- 20'-6 b 3'4' d9 9 13'•11' d 16'-4' b 15'-9' b 73' d 9 16'•10' d 29.9' d 19'•6' b T-2' d10 10 13'-5' d 15'3' 0 14'•11' b Z3' d t0 76'-3' d 29-0' d 18'3' b X-1' d11 11 13'-0' d 4'•9' b 14'•3' b 73' d 11 15'•9' d 19'•5' d lr•8' b 7.1t' dt2 12 17-8'74'•2' b 13'-6' b Z•5' d /2 15'•3' d 78'•10' b 16•11 0 2'-11' d 2' x 8" x 0.072" x 0.224' Self Matin Beam 2' a 9" x 0.072' ■ 0.224' Self Mating Beam Load Max. 5pan 17(bendin Width (X.) 132 Span 3 Span 'b' or dellection',r 4 Span Cantilever Load Max. Span'L'/(bandin 'b' or deflection'd) Width (k.) 132 Span 3 Span 4 Span Cantilever 4 27.7' d 27'•11' d 28'-5' d 4'-0' d 4 24'-9' d 30'-7' d 31'•7 d 4'-0' d 5 20'•11' d 25'•11' d 26'•5' d 7•11' d 5 27-11' d 28'-S' d 26'•11' d 4'•0' d 6 19'•9' d 244' d 24'•10' d 7-9' d 6 27'3' d 26'-9' d 27'-0' b 4'-0' d 7 16'•9' d 23-0 d 23'•1' b 7-7' d 7 20'•7' d 25'-5" d 2S'-0' b 7-11' d 6 1T-11' d 27-0 d 21'-r b 3'•5 d a 19'4- d 24'-3' b 27.5' b 3'-9' d 9 1 17'.3' d 21'•1' b 294' b T-7 d 9 15.11' d 27-10' b 27.1' b 3'•r d 10 76'•6' d 19'-11' D 19'4' b 3'•0 d 10 18'•3' d 21'3' b 29-11' b 3'•5' d 11 16-1' 6 19'•1' 0 18'-5' D 7-1' d 11 17'•8' d I 29.8' b 1 19'-11' b 74' d 12 1 15'3' d 1 18'-3' b 1 17'3' b 1 2-11' d 12 IT -T d 1 19'-9' b 1 19'•1' b 7•3' d 2" x 9' x 0.082' x 0.306" Self Mating Beam 2' x 10' x 0.092' x 0.369" Self Mating Beam 2'x 10"x 0.092' x 0.369" Self Mating Beam Load Max. Span Vl bendin 'b' or Oct ction'd Width (X.) 192 Span 3 Span 4 Span Cantilever Load Max. Span'L'I bendin 'b' or def ection'tr Width (X.) 132 Span 7 Span 4 Span • Ca- ntilever Load Max. Span 13(bendin 'b' or deflection'd) Width (X.) 132 Span3-Span- - 4.Span . C7a-nrlleiier 4 26'4- d 3Z•7' d 33'•3' d 4'-0' d 4 39.11' d 38'-2- 0 38'-11' d 4•-0' d- 5 24'.6' d 39.3' d 39.10' d 4'-0' d 5 28'-8' d 35•5' d 36.1' d 4--0- d 6 23'46 d 26•5' d 29'4' d 4'-0' d 6 26'•11' d 33'4' d 33'•11' d 4'-0' d 7 21'-10' d 27'-0' d 27'•6' b 4'41' d 7 25'-8' d 31'3' d 37.3' d 4'.0' d 8 29.11' d 25•10' d 25'3' b 3--11- d 8 24'.6' d 39.3' d 39-11' d 4'-0' d 9 29.1' d 24'-10' d 24'•3' b 3'-10' d 9 23'-7' d 29'-1' d 29'•2' b 4%0' d 10 19'•5' d 23'-9' b 27.11' b 3'3' d 10 22'-9' d 26'•1' d 27'3' b 4%0" d ' 11 16-10' d 1 273' b 21'•11' b 1 3'-7' d 11 27.1' of 27'-3' d 26'•4' b 4'-0- d 12 18'•3' tl 21'-9' b 29.11' D TT -521'•5'd 12 21'•5' d 26'-1' b 25'•T b 4'-0' d Mono -sloped roofs include gables where the slope of the roof is Was than 1' in 120. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance From upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 B -140A Allowable Roof Beam Spans for Freestanding Carports with Mono -Sloped Roofs* For 3 sec. wind gust at 140A MPH velocity; using design load of 15 #ISF (5a #ISF for Max. Cantilever) ..... - teat T.a Z' x 7" x 0.055" x 0.120" Self Mating Beam 2' x 7' x 0.055' x 0.120" Sall Mating Beam w/ Insert Load Max. Span VI(bendin 'b' or denection'd) Width (k.) 192 Span 3 Span 4 Span Cantilever III Load Max. Span'121(bending W or dellection'd) Wtdth (k.) 142 Span 3 Span 4 Span Cantilever 4 17'4' d 21'•5' d 21'-11' d T-7 d 4 29-11' d 25'-11' d 26•5' d 3'•11' d 5 16'-0 d 19-11' d 19'3' b 3'-1' d 5 19'4' d 24'.1' d 24'•7' d T-8' d 6 15'-7 d 18'•6 b 1x•11' b 7.10' d 6 18'4' d 27-8' d 23'•1' d 3'3' d 7 14'-5' d 17'•3' b 16'-8' b 7-9' d 7 17'•5' d 21'-6' d 21'•11' d 7.3' d a 13'-9' d /6'-1' b 15'•7' b 7-7' d a 16'-6 d 29-7' d 20'-6 b 3'•0 d 9 13'•3' d 15'-2- b 14'-8' b 73' d 9 IF -W d 19'-9' d 19'•6' b X -O' d 10 17.10' d 14'-5' b 13'-11' b Z-5' d 10 1S -W d 19'-1' d 18'3' b 7.11' d 11 17.3' b 13'•9' b 73'•7 b 74' d 11 14'•11' d 18'-3' b lr•8' b 7-10' d 12 11'-9' 0 13'•0 b 12'-0' 0 7-3' d 12 14'•7- d 173 0 16•11 0 7-7 d 2" x 8" x 0.072' x 0.224" Self Mating Beam 2' x 9' x 0.072' x 0.224" Self Mating Beam Load Max. Span'L'I(bending b' or deflection V) n 7 Span 4 Span Cantilever Width (k.)KV-W LoeWMax. 3 VI(bernfing W or deflection'd) Width (fL) 192 Span 3 Span 4 Span Cantilever 4 26'•7' d 27'.1' d 4'-0' d 4 23'•7' d 29'•2' d 29'-9' d 4'-0' d 5 24'-8' d 25'•7 d 3'-9' d 5 21'-11' d 27'-1' d 27•7' b 4'-0' d 6 23'-3' d 23'•3' b T -r d 6 20'3' d 25'-6' d 25.27 b 3'•11' d 7 27.1' d 21'-6' b 3'4' d 7 19'-r d 24'•1' b 23'4' b 7-8' d a 29-10' b 20'-1' b 3'-3' d a 78'-9'd 22'•7' b 21'-10' b 73' d 9 19'-7- b 18'•17' 0 T-1' d 9 18'-0' d 21'-3' b 29.7' b 3'•5' d 10 15-7' b 17'•17' b 7.11' d10 17'.5' d 29.2' b 19'-6' b 3'•3' d 11 15'4' d 1r-9' b 17'-2' b 7-11' d 11 16.10' d I 19'-3' b I t8'•r b 3'•2- d 12 14'•11' d 16-11' b I 16'•5' b 2'•10' d 12 1 16'•5' d I 18'•5' b 17'•10' b 7.1' d 2' x 9' x 0.042' x 0.306' Self Mating Beam 2' x 10' x 0.092' x 0.369" Self Mating Beam Load Max. 5pan'121(bendin 'b' or deflection'd') Width (k.) 192 Span 3 Span 4 Span CaX. ntilever Load Max. Span Vl bendin 'b' or Oct ction'd Width (X.) 192 Span 3 Span 4 Span Cantilever 4 25'•2' d 31'-0' d 31'3' d 4'-0' d 4 29'•5' d 36'4' d 37'.1' d 4'-0' d 5 23'4' d 28'-10' d 29'•5' d 4%0' d 5 2714' d 33'-9' O 1 34'•5' d 4--0- d 6 21'-I l' d 27'-1' 0 27'-B' b 4' -O' -d 6 25'•9' d 31'-9' d 37.5' d 4'-0' d 7 29.10' d 25'-9' d 25'•7- b 7.11' d 7 24'•5' d 39-2- d 39.9' b 4'-0- d a 79'•11' d 24'3' d 23'•11' b 3'-9' d a 23'4' d 28'•10' d 28'•9' b 4'•0- d 9 19'-2' d 23'4' b 22'•7' 0 3'•r d 9 27.6' d 27'•9' d 27'-1' b 4'-0' d 1078'•6' d 27-0 b 21'-5' b 3'3' d 10 21'•8' d 26'-7' b 25'-9' b 4'-0' d 11 17.11' d 21'•1' 0 20'•5' b 3'-5' d 11 21'•9 d 25'-5' b 24'-6' b X-11' d 12 1 17'-5' d 1 20'-3' b 1 17.6- b I 3'-3' d 1 12 29.5' d 24'4' b 23'-6' b 7.10' d ' Mono -sloped roofs include gables where the slope of the roof is less than 1' in 12'. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. ^o � ry a ^^ N Q J LL^^ E C=,'^ I u CJ 4J N `r C4 croil U rvn UJ >LLul Or C p °oo0ov 1'4 E m�wc IIIE-=I ^ LL VIII 't- ron Go to J Y r' t_ . 0 =1 vN m �v ,4 J W J Q D O 20 C7 �UZW Z(nWZ0_j (�Ol70Hm Q = W _.l W F- W in (V wHaop W J U D C V- OCn W O _ O U Z 04 Q Q f, W Q' /1 J N LL y J LL Q n n i_0vrp a W }n1lN1 D� CO COO=rt^ t- tjjvto Lu m W J oNo' <L ' mai U W<WLL C 2ND = m W J �o�•� _ r f Jill- �VEA • SHEET 7 09.15.2004 OF 10 Table 2.1.1 C-110 Allowable Spans For Miscellaneous Beams Used for Freestanding Carports with Mono -Sloped Roofs* For 3 sec. wind gust for 100 8 110 MPH velocity; using design load of 10 #ISF Aluminum All.. 6691 TA Single Self -Mating Beams 6'-0" T-0" D'-0" Tribute load Width 9•-0^ 10'-0" 11'-0' 12'-0' Allowable Span •L' I bsnding -b- or de0ection'd• 15•-0' 1 16•-0^ 1 17' -0 - 2"x 1" x 0.041• x 0.100" 0'4i' d •11' d 9'-7' d 9'-2' d 8'•10' d 8'-7' d 8'4' d 8'•1' d r•11" d 7'•9' d 7'•r d 7-.5' d 2" x 5" x 0.050" x 0.100" 12'4• d 1 VAX d 11'•5• d 10'•11' d 10'-8' d 10-3• d 10--1• d 9'-10• d 9'-7• d 9'•5' d 7.2' d 2^ x 6^ x 0.050" x 0.120^ 15'-3• d 144-W d 13'-10- d 13'3• d 17-10- d 12'-5• d 17-1- d 11'•9• d 11'-6• d 11'-3• d 10--11• d 10--9• b " 7" 2 x s 0.055" x 0.120" 17'3' d 1 6.6 d 1 '- ' 5 9 d 1 '- ' 1 '• ' 5 2 d 4 8 0 1d'-7 d 1 '- 7 9 d 1 '- 1 '-1' 1 •1 3 5 d 3 d 7 0 6 1 '- ' 2 6 b i -1' 7 b " r 1 2 x z 0.055" w insert '•11' 20 d 19'-11' d 1'-1' 9 d 1 '3" 17' D d -0 d 7'- 1 T d 1 ' 6.8 d 16'- ' d 1 '-1 ' d 3 5 0 1 '• ' 5 5 d 1 '- 14'- ' 5 T d 10 d 2" x 8" x 0.072" x 0.224" 21'•6• d 20'-5• d 19'-7' d 18'-10- d 18'•7 d 17'-7- d 17'•1• d 16'-8' d 16'•3• d 15'•10• d 15,-G, 15'-2- d 2' x 9" z 0.072" x 0.221" 234.7- d 22'-5' d 21'•5' d 20'•7• d 19'•11• d 19•-3' d 18'•9• d 18'•3' d 17'-10• d lr-5' d _d 17'-0- d 16'-8• d 2" x 9' x 0.082" x 0.306" 25'-1' d 23'-t0- d 22'-10' d 21'-11' d 21'•2• d 20-.6' d 19'•11• d 19'-5' d 1VA V d 18'-6' d 18'•1' d 17'•9' d 2^ x 10" x 0.092" x 0.369^ 29'-5' d 27'•11' d 26'-9' d 25'-9- d 24'-10- d 24'-t• d 23'3• d 27-9- ill 2272" d 1 21'-8• it 21'-3' d 20'•10' d Double See -Mating 6'-0- 7'-0' Tribute Load Wfdth 16'-0" 17'-0' Beams 6'-0• 7'-0' 8'-0" 9'-0' 10'-0" 11'-0' 12'-0" 17'-0' i.'-0" 15'-0" 16'-0' 17'-0" d 7--10' d T-8• d 7--6• d added to Top or Bottom Allowable Span'L' I ding V or deflection'd' 7'-0' 1 8•-0" 9'-0' 1 10'-0' 1 11'-0' 1 IT -111" 1 13'-0' 1 2" x 8" x 0.072^ x 0.224^ 27'•1. d 25'-9' d 24'.8• d 23'•8' d 27-10'd 27--T d 21'-6' d ZO'-11' d 20'•5' tl 19'•11- O 19'-r d 19'-T d 2" x 9^ x 0.072" x 0.224" 29'-9' d 28'•3• d 27'4Y d 25'•11• d 25'-1• d 26'3• d 23'-7' d 27.11' d 27-5' d 21'•11• d 21'-5' d 21'-0' d 2' s 9^ x 0.082^ x 0.706' 22'-8' d 30'-1' d 28'-9' d 27'-8' d 26'-0' d 25'-10' d 25'-1' d 24'•5' d 23'•10' d 23'3' d 27.10' d 273' d 2' x 10" x 0.092" x 0.769' 36-r d 34'-9' d 33'-3- d 31'-11- d 30--10" d 27.10' d 29'•0' d 28'•3' d 27'•7' d 26'-11• d 26'4• d 25'•10" d Double Self -Mating 6'-0- 7'-0' Tributary Load Width Tribute load Width 9'-0' 10'-0• it' -0' 12'-0' 17--0' 1a'-0' 15'-0' Allowable Span •L• I bendin 'b' or dettection'd' 16'-0" 17'-0' 26'-3'20--0- d204' 2•11• d 23'•10'd2.1'd7.d 2231'T Beams with 2 x 4 SMB 9'-8' d 9'•3' d 8'-11' d 8'-7' d 8'4' dV78' d 7--10' d T-8• d 7--6• d added to Top or Bottom 6•-0" 1 7'-0' 1 8•-0" 9'-0' 1 10'-0' 1 11'-0' 1 IT -111" 1 13'-0' 1 14'.7- 1 15•-0" 16'-0' 1 17'-0 Pe radicular to Webs f rpe 9'•9' d 9•-6^ d 7-4' d I n' ' I bendingW or deflection'd'_ Allowable Spa L 8'-10' b _ 2V -W ill s 8" x 0.072" x 0124" 30--10- d 29'•3' d 27'-11' d 26'-11• d 25'•11' d 25'-2-d 24'-5' d 23'•10' d 234-7 d 22'-8' d 22'-3' d 21'-9' x 9' s 0.072" x 0124" '-1 ' 33'•6' d 31 0 d 30--5' d 29'-3' d 28'-3' d 2 7'S d 26'-7• d 25'-11' d 25'-3' d 24'-0' d 24'-T d 23'-8' x 9" x 0.082" x 0.306" 35•-1' d 1 33'3' d 1 31'-11• d I 30'-8• d 1 29'-7• d 1 28'•8' d 27--11' d I 2r-2" d 1 26'4• d 1 25'•11' d 1 25'4• d 24'-10 x 10" x 0.092" x 0.369" 40'•3- d 1 38'-3' ill 36'•7- di 35'-2' ill 3Y-11"di 37.1i'di 31'-Il'dl 31'-1' d 393' d I 27-8- d I 29'-0' d I 2a'-5' .Mono -sloped roofs include gables where the slope of the rod is less than 1• in 12'. Notes: 1. Above spans do not Include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 C-120 Allowable Spans For Miscellaneous Beams Used for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust up to 120 MPH velocity; using design load of 11 #ISF el..min..n All.. Anal TJ. Single Self -Mating Bums#20'-1- 6'-0- 7'-0' 8'-0" Tribute load Width 9'-0' 10'-0• it' -0' 12'-0' 17--0' 1a'-0' 15'-0' Allowable Span •L• I bendin 'b' or dettection'd' 16'-0" 17'-0' 26'-3'20--0- d204' 2•11• d 23'•10'd2.1'd7.d 2231'T d9'•10- d174 9'-8' d 9'•3' d 8'-11' d 8'-7' d 8'4' dV78' d 7--10' d T-8• d 7--6• d 7'4'2' 20'4' d x 5" x 0.050" x 0.10011'-11' 30-.8' d I d 11'-6• d 11'-0• d 10'-8• d 10-3• dd 9'•9' d 9•-6^ d 7-4' d 9'-1' d 8'-10' b 2^x 6"z0.050"x0.120 2V -W ill 14'-0- d 13'-5' d 12'•11'd 17-5• d 12'•1• dd 11'•5- d 11%2' d 10-.11•d 10--7' b 10'-3' b 2^x7"z0.055"x0.120 1VA V d 15'-3• d 14'-8- d 14'•2- d 13'•9• dd 17-11• d 12'-0• d 1244' b 11'-11•b 11'-6- b 2" x T x 0.055" wl inse d2" 19'4' d 18'•6' d 17'•9• d 1r -T d 16'-7• dd 15'-8' d 15'4' d 14'-11• d 14'-8" d 14'3' d 2^ x 8" x 0.072" x 0.224" 20--10- d 19'-10• d 18'•11• d 111'-2' d 174.7' d 17'-0• dd 16'-1• d 15'-9• d 15.4' d 1T.0' d 14'-9' d 2" x 9- x 0.072" x 0.22.' 27-10- d 21'-9• d 20--9• d 19'-11' d 19'-3' d 1 &-a' d d 1 T -a' d 1 T-3' d 16.10- d 16'-8- d 16'•7- d 2" x 9" x 0.082" x 0.306" 243' d 23'-1" d 27.1• d 21'-3' d 20-.6' d 19'•11• d d 18'•10' d 18'4• d 17'-11' d 17--7" d 17'•T d 2" x 10" x 0.092" x 0.369' 28'-6- d 2T-1• d 25'•11' d 2d'-11' d 24'•1' d 23'3' d d 22'-0' d 21'-6' d 214Y d 16'-3• d 2^ x 10' x 0.092" x 0.369' Double Self -Mating Beams 6'-0- Tributary Load Width T-0' 9'-0' 9--0" 10•-0'2Z; 12'-0" 13'-0' 1 14'-0" 1 Allowable Span •L• 1 bending V or deflection'd' IS'17--0 Tributary Load Width - 2^ x 8' x 0.072^ x 0.224" 26'-3'20--0- d204' 2•11• d 23'•10'd2.1'd7.d 2231'T d9'•10- d174 dIVA I'd18-7• IV -7- d 2" x 9" x 0.072" x 0.224" 28-10' d ' 4• d 2-2-d 25•2• d 24'4• d -d7-10-d 2 22'•3' d 21'-9' d 21'-3- d 20--9• d 20'4' d 2" x 9• x 0.082" x 0.306" 30-.8' d I 29'•1• d 27'-10• d 1 26'-9• d 1 25'•10' d 1 25-1• dj 24'4' d 23'-8' di 23'-1^ di 22'-7- dl 27-1• di 21'-8' d 2" x 10- x 0.092' x 0.369" 35'-5' d I 33'-8' di 37-2- ill 30'-11' il2W-10'di 2V-11'di 28'-1• di 27'4' di 26'-8' di 26'-1' ill 2V -W ill 25'-0' d Double Self -Mating 6'-0" 7'-0' 8•-0' Tributary Load Width 15'•0" 16'-0" 17'-0^ 2"). 4"x 0.044' x 0.100" Beams with 2 x 4 SMB 9'•7- d 8'-9• d 8•-5' d 84-1' d 7-.100 d 74-W d T-5' d T-' It added to Top or Bottom 6•-0- 7--0' 1 8'-0' 1 9•-0' 1 10'-0' 1 11'-0" 1 12'-0' 1 13'4' 1 14•0' 1 15'-0a2Y.5-d I VA' d T-0" (Perpendicular to Webs 9'-3' it 8'•11 • b e•-6• b Allowable an •L' 1 bending'b' or denection'd' 8'-2- b 2^ x 6" x 0.050" x 0.120" 2" x 8' x 0.072" x 0.224" 29'-10' d 28.4• ill27'-1. 6 26'-1- d 25'-2' d 24'-5- d 23'-8' d 23'•1• d 22'-6- d 21'-111'-1' 10'•9' b d 2^ x 9" x 0.072" x 0.224" 3746' d 30'•10• d 29'-6- d 28'3- d 27'-5- d 26'fi• d 25'-9' d 25'-1- d 24'.6- d 23'•11.11- d2" x 9" x 0.082" x 0.306" 34'-0' d 32'4- d 30'-11' d 29'•9' d 28'-8- it 27'.10- d 27'-0- d 26'4- d 25'-8- d 25'•1"'-t• 2" x 7- x 0.055" w1 insert d2" x 10' x 0.092" x CHIP" 38'-I'd37--o'35'-5- 16J' d d 34--1- d 32'.11- d 31'-10' d 30'.11- d 30'-2-d 29'•5' d 28'•9''•7- 13'•7' d d Mora -sloped roofs include gables where the slope of the roof is less than I'm 12'. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. 11 Table 2.1.1 C-130 Allowable Spans For Miscellaneous Beams Used for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust up to 130 MPH velocity; using design load of 13 #ISF Aluminum All.. anal T.6 Single Self -Mating Beams 6'-0" 7'-0' 8•-0' Tribute load Width 9.4- 10•-0" 11'-0" 12'-0' 13'-0" 14'-0" Allowable Spsn'L' / be Ing •b' or deflection'd' 15'•0" 16'-0" 17'-0^ 2"). 4"x 0.044' x 0.100" 9'-8' d 9'•7- d 8'-9• d 8•-5' d 84-1' d 7-.100 d 74-W d T-5' d T-' It T-0' b 6'-9• b 6'-7" b 2" x 5" x 0.050- x 0.100" 11'-11' d 11'4' d 10'-10"d 10'-5- d I VA' d 9'-9' d 9'-6" it 9'-3' it 8'•11 • b e•-6• b 8'-5• b 8'-2- b 2^ x 6" x 0.050" x 0.120" 13'-110 d 1311' d 124-8' d 12'•2' d 11'.9' d 11'-5• d 11'-1' d 10'•9' b 10'-5' b 10--0' b 9'-91 b 9'-5" b 2- x 7" x 0.055" x 0.120^ 16.11'd 15'•1' d 14'-5" d 17-11'd 13'-5' d 12'•11' d 17.8' d 12'-Z' b I V-11" b 11'4' b 10'-11• b 10-.7- It 2" x 7- x 0.055" w1 insert 1 19'•7 d 16•3' d 17'-6' d 1F -10'd 16J' d 15'-8' d 15'-3' d 14'.10'd 14'-6' d 14'-2' d 17-10'd 13'•7' d 2^ x 8" x 0.072" x 0.224" 1 19-9• d 18'•9' d 17'-11'd Ir -3" d 16'•8' d IVA' d 15'-8' d 15'•3' d IC -10"d 14'.6' d 14'.2- b 13'-9' b 2' x 9":0.072" x 0.224" 21'-8' 0 20'-7' d 19'-8' d 18'-11• d 18'•3• d 17'-8• d I r-2' d 16'•9- d 16'4' d 15'-10' b 15'4' b ld'-10- b 2- x 9" x 0.082" x 0.306" 23'•0' d 21'-10"d 2(Y -11"d 20'-1' d 19'-5' d 18'-10- d 18'-3' d 17'•9• d 17'4- d 16'-11• d 16'-T d 16'-3• d 2^ x 10' x 0.092" x 0.369' 126'-Il'di 25'•7' d 24'-6' d 23'-7• d 27.9' d 22'-0' d 21'-5' d I 20'-10'd 1 20'3' d I 19-10-d 1 19'-5- Double Self -Mating - 7'-0' 8•-0" Tributary Load Width 16'-0" 1 17'-0" 2" x 4" x 0.044^ x 0.100" Beams 6•-0' 1 7'-0" 8'-0" 9'-0' 1 10'-0' r 11'-0' 1 12'4' 1 13'-0' 1 14'-0' 1 15'-0" 16'-0" 17'.0 - added to Top or Bottom 6-0' 1 7'4' 1 Allowable Span •l• I bending 'W or deflection'd' 1 11'-0' 1 174' 1 13'-0' 1 14'-0" 15'4' 1 16'-0' 1 2^ x a" x 0.072" x 0.224' 24'-10'd 23'•7- d 2Z-7• d 21'-0' d 20% d ZO'3' d 19'-9- d 19'-T d 18•-9' d 16'3- d 17-.11' d 1r•r d 2" x 9" x 0.072" x 0.224" 27'-3' d 25'-11' d 24'•9- d 23'-10- d 27.11' d 27.3" d 21'-8' d 21'-1• d 20-.7- d 20'-1' d 194-8' d 19'-3' d 2" x 9" x 0.082" x 0.306" 28•-11• d 27'•7- d 26'4- d 25'3' d 24'-5' d 23'5 d 23'-0- d 27-5' d 21'•10- d 21'3• d 20'•11" d 20-.6• d 2" x 10" x 0.092" x 0.369" 33'-6" d 31'.10- d 30'-5• d 29'-3' d 28'-3' d 27'4• d 26'-7' d 25'-11• d 25'-3' d 24'.8W d 24'•2' d 23'-8" d Double See -Mating 6'-0" 7'-0' 8•-0" Tribute Load Width 9•-0" 1W4- 11'-0" 12•1'1 1T-0' 1 1a'-0" Allowable Span V / din 'b' or deflection'd' Tributary Load Width 16'-0" 1 17'-0" 2" x 4" x 0.044^ x 0.100" Beams with 2 x 4 SMB 8'-9' d 8.3• d 8'-0' d 7'-9' d 7'•6' d T-3' d 7'-0' b 6'•9' b 6'-6' b 6'4' b added to Top or Bottom 6-0' 1 7'4' 1 8'-0' 1 9'4" 1 10'.7- 1 11'-0' 1 174' 1 13'-0' 1 14'-0" 15'4' 1 16'-0' 1 17'.0 - (Perpendicular to Webs 7'•7• b 2' x 6" x 0.050" x 0.120" 133' d Allowable Span'L' I bendin •b' or deflection'd' 11'-8• d 11'-3' d 10'.11"d 10--5- b 10'•0- b 2" x 6" x 0.072" x 0.224" 28'•T d I 26'-10'd 1 25'-6- d 1 24'7 d 23 • 7S- - '-TrU 3T••T 20-.10' d 20-4' d IT 11- d 2" x9" x 0.072" x 0.224' 30'-9' d!! -Z- d 27'•11.6 26'-10' d 25'-11• d 25•-1• d 24'-5' d 23'•9' d 23'-T d 27.8• d 22'-2• d 21'-6- d 2" x 9' x 0.062^ x 0.306" 37.2• d 1 30'-7• d 1 29'-7 d 1 28'-1• d 27'•2- tl 1 26'4• d 1 26•7- d 1 24'.10- d 1 24'-3- d I 23'-9' d 23'-2- d I 27.9• d 2" x 10' x 0.092" x 0.369" X.11'di 35'-0• ill 33'-6• di 32'-3' di 31'.1- di 30'•7 di 29'-3• d I 28'-0• d I 27'.10'd 1 27'•2' d 1 26'-7• d I 25-1' d . Mono -sloped roofs include gables where the slope of the roof is less than 1' in 12'. Notes: 1. Above spans do not Include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.1 C -140A Allowable Spans For Miscellaneous Beams Used - for Freestanding Carports with Mono -Sloped Roofs' For 3 sec. wind gust up to 140A MPH velocity; using design load of 15 #ISF rn � r. v N . ry a J J .1, CV1 �vrn v = iJ b " u a in ff, 2 > LLOr 0 OL p 000 V f� L ry ,!f x E E Cm ro�wc IIII =LL E III •r b r 'd °D _j_V r 0X) .r Wry f' m �v 00 J a0 W n H � J Q 1/) D O 2p Z _Z(O W ZOJ O0Opt-m Q = W J W W m N _ H Q O p W W J U �_ (14 - lLiQU O W o in LL REVIE NED Q Z o PLWs SADFpRD Q car► of Q Single Self -Mating Beams 6'-0" 7'-0' 8•-0" Tribute Load Width 9•-0" 1W4- 11'-0" 12•1'1 1T-0' 1 1a'-0" Allowable Span V / din 'b' or deflection'd' 15'-0" 16'-0" 1 17'-0" 2" x 4" x 0.044^ x 0.100" 9'-2' d 8'-9' d 8.3• d 8'-0' d 7'-9' d 7'•6' d T-3' d 7'-0' b 6'•9' b 6'-6' b 6'4' b 6'-T b 2" x 5" x 0.050" x 0.100" 11'-5' d 10'-10'd 10-4• d 7-11' d 9-7• d 740 d 94-0• d 8'-8' b 6'3• b 8••1• b 7-.10- b 7'•7• b 2' x 6" x 0.050" x 0.120" 133' d 12'-8' d 17.1• d 11'-8• d 11'-3' d 10'.11"d 10--5- b 10'•0- b 9-9' b 9'3• b 7•1" b 8'•9' b 2' x 7" x 0.055- x 0.120' 15'•2- d 14'-5• d 13'•9' d 13'•3' d 17-10' d 17.3• b 11'-9' b 11'3' b 10%11• b 10-b' b 10'-T b 9'•11• b 2" x 7" x 0.055-w/ insert 18'3' d 1T-5' d IF -8• d 16'.W d 15'•5' d 14'•11' d 14'-7' d 14'-2- d IYAW d IY-6' d 13'-3' d 17-11' d 2" x a' x 0.072- x 0.224" 77- d 1TAW d Ir -10 d 16.5• d 16.10'd 15'3• d 16'•11' d 14'-6' d 14'-1• b IY.7' b 17-T b 17.9" b 2' x 9" x 0.072- x 0.224- 20'•r d 19'•7- d IF -9• d 164' d 17'-5' d 16-10- d 163- d 15.10'b 151•3' b 14'-9' b 14'•3' b 13'.10'b 2" x 9" x 0.082" x 0.306' 21'•11' d 20'-10- d 19'•11' d 19'-2' d 18'-6' d 17'•11• d 17-.5' d 16'•11- d 16'-7' d 16'•2- d 15'-8' b 15'-T b 2" x 10' x 0.092" x 0.769' 25'-9' d 24'•5' d 23'3• d 22'•5' d 21'-8' d 21'-0' d 20'•5' d 19'-10- d 19'-5' d 18'-11' d 18'•6' d 18'•2' d Double Self-MatingTribute Beams 6'-0- 7--0" D'-0- Load Width 9'-0" 10•-0' 1 1 12'-0" 17--0' 1 14'-0" Allowable Span'L' I bendin 'b' or denection'd' 15'-0' 1 16'-0" 1r-0" 2" x 8" z 0.072" x 0.224" 27-.8' d 27.6' d 21•.6' 6 20'-8- d 19'-11' d 19'3' d 18'•10' d 18'4' d 17'•10' dffld added to Top or Bottom 17'-1' d 16'•9' d 2" x 9" x 0.072" x 0.224" 25'•11' d 24'•8' d 23'-r d 27-8' d 21'-11' d 21'-3' d 20'-7 d 20'•1' d 194.7- d 18'•9' d 18'4• d 2^ x 9" x 0.082" x 0.706' 27'-8' d 26'•3' d 25'-1- d 24•-2• d 23'4• d 27.7- d 21'-11• d 21'4• d 20--10- d17-11' d 19'-6' d 2" x 10" x 0.092" x 0.369" 3V-II'dl 30-4' d 2944' d 27.11- d 26'•11' d 26'•1' d 25'3' d 24'-0• d 24'-1' ;f23' 23'-0' d 27.7- d Double Self4dating loo U ll � Tributary Load Width SHEET Beams with 2 x 4 SMB 7C 09.15-2004 OF 10 added to Top or Bottom 6'-0' 1 7'-0- 8•-0' 1 9'-0' 1 10'-0' 1 11'-0' 1 17-0' 1 17'-0" 1 1.'-0" 1 15'-0" 16'-0" 1 17--0- (Perpendicular to Webs) Allowable Span V 1 be Ing W or deflection'd' 2^ x 8" x 0.072" x 0.224" 26-11' d 25'-7' d 24'-5' d 23'-6• d 22'•8' d 21'-11• tl 21'4' d 20'•10' d 20'3' d 19'-10• d 19'•5• d 17.0- d 2" x 9' x 0.072" x 0.224" 29'-3' d 27-10' d 26'•7' d 25'•7' d 24'•8• d 23'•11' d 23'-3' d 27-8' d 22'•1• d 21'-7' d 21'-1' d 20'-W d 2" x 9" x 0.082" x 0.306" 30-.6' d 29'•2' d 27'.11' d 26'-10- d 25'-11• d 25'•1• d 24'3• d 23'-9• d 23'-2• d 22'-7• d 27-2• d 21'-8• d 2" x 10' x 0.092' x 0.769' 35'•2- d 33'-5' d 31'•11- d 30'•9- d 29'-8. 0 28'-9' d 27'-11' d 27'-T d 26'-6' d 25'-11' d 25'4' d Zr-10d . Mono -sloped roofs include gables where the slope of the roof is less than 1 • in 12. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans maybe interpolated. ti W QN C ~ N L.L 7 `o � J LL O Q I- Z�f,utni C W>In n CIO W 0 X: t- W j v co oro W ItWtnZrO J O O N LL-' od U WaWLL C ZMw F 2m 3 W (II > ti J /"-) . I (.1. IC: ( loo U ll � EAL SHEET 7C 09.15-2004 OF 10 Table 2.1.2-110 Allowable Roof Beam Spans For Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 sec. wind gust at 110 MPH; using design load of 12 VSF (36 S1SF for Max. Cantilever) Ai ­i... in,xn All- 9091 Tl, 2" x 3" x 0.045" Hollow 2' x 3' x 0.050' Hollow Tilt Load Max. Span V/ bonding -b- or deflection'd) Width (k.) 1 6 2 Span 3 Span 4 Span Cantilever Load Max. Span'L' I (bonding'b' Width (k.) 1 i 2 Spa 3 Span or deflection V) 4 Span Cantilever 4 TAW d 9'-0' d 9'-10' d 1'-r d 4 7'-0' d 7-0' d 9'-0' d 1'-r 0 5 7'•3' d 8'•11' d 9'-1' b 1'-0' d S T -T d 8'•10' d 8'-11' b 1'-0' d 6 6'-10' d 8'-5' d 8'4' b 1'-5' d 6 6'•9' d 9'4' d a'-1' b 1'-5' d 7 6'-0' d 7.11' b T-0' b 1'4' d 7 6-5' d T.9" b T-0' b 1.4' d 9 6'•T d T-5' b T.7 b 1'-3' d a 6.1' d T•3' bmbl%l' 1'-T d d 9 S'-11' d 7'-0' b 6'•10' b 1'-3' d 9 5'•11' d 6'•10' bd 1'-7 d 10 10 5'•r d 6'-0' 0 6-5' 0 1'-7 d 10 5'-0' d 6'-0' b 1'•1 d d 11 5'-7' d 6'4' b 6-T b 1'-7 d 11 5'-0' d 6'•T b 1'-1' d d 12 5'•5' d 6'-1' b 5'•11' b 1'-1' d 12 5'4' b 5'-11' b 1 1'-0- d d 2' x 4' x 0.045- Hollow Till r x 4' x 0.044' a 0.100' Soh Mating Beam 2' x 4- x 0.044' x 0.100"Self Mating Beam Load Max. Span V I (bending 'b' or deflection'd') Width (k.) 1 i 2 span 3 Span 4 Span Ca Nlever Load Max. Span'L' I bend Width (ft.) 1 i 2 Span ]Span ing 'b' or deflection'cr 4 Span Cantilever Load Max. Span 'L' I (bond in 'b' or deflection'cr Width (fl.) 1 i 2 Span 3 Span 4 Span Cantilever 4 7•9" d 17-W d 17.3' 0 1'-11' d 4 11'4' d U'-11' d 14'•3' d 74' 0 5 7-0' d 11'-7 d 10'-11' b 1'•10' d 5 10-.6' d 17.11' d 13'-3' d 7-T d 6 F -W d 10-4' b 7-11' b 1'•r d 6 7-11' d 12'•3' d 17.6' b 7-0' d 7 8'•1' d 7-T b 9'•3' b 1'-0' d 7 7.5' d 11'•7' d 11'.7' b 1'•11' d a 7'•r d 8'•11' b W -a- b 1'•r d a F-11' d 11'4' d 10--10- b 1'-10' d 9 T-5' d B'-5' b 9'-2' b 1'-0' d 9 E'-8' d 10-.6 b 10'•2' b 1'-7 d 10 7'-T b T-11' b 7'•r b 1'4' d 10 64' d 9'•11' b 7-0' b 1'•r 0 11 6'•10' b T-8* b T4' b 1'•5' d 11 6.1' d 7-0' b 7.3' b V -S' d 12 6'4' b T4' b T-1' b 1'-5' d 12 7'-10- d 7.1' b 8'-10- b 1'•r d 2'x V x 0.050"x 0.100' Self Mating Beam 2' x 6' x 0.050'x 0.120' Self Mating Beam T a 6' x 0.050' x 0.120' Sell Mating Beam Load Max. Span'L' I (banding W or do ection'd') Width (k.) 1 i 2 Span 3 Span 4 Span Cantilever Lead Max. Spon'L' /(bend in 'b' or deflection'd Width (k.) 1 i 2 Span 7 Span 4 Span Cantilever Load Max. Spa n'L' / (bendin 'b' or defleclion'd') Wldlh (k.) 1 i 2 SPa 3 Span 4 Span Cantilever 4 1414' d 1744' d 174-8' d 7.11' d 4 16'-5' d 20'4' d 20'•8' d 3'4' 0 S 17-V d 16-1' d 16'•5' d 7-0' d 5 15'-3' d 18'•10' d 19'-3' it 3'-2' d 6 17.3' d 15.2' d 15'-5' b 74i d 6 14'4' d 17'•9' d 17'-10' b 2'•11' d 7 11'-0' d 14'•5' d 14'-3' b 2'•5' d 7 13'-0' d 16-10- d IF -6' b 2'•10' d a 11'•2' d 13'•7 d 13'4' b 7-3' d a 134-W d 15'•11' b 15'•5' b 7-r d 9 10'•7 d 13'-0' b 17.7' b 7.2' d 9 17-6 d 15'-1' 0 147 b 7.7' d 10 10-4' d 174' b 11'-11' b 7.1' d 1 10 1 17.1' d 1 14'4' b 13'-10' b 7.6 d 'If 10-.0' d I v -r b 11'-5' b 7-1' d I 11 I 11'-r d13'-8' 0 13'•7 9'•3' d 12 7•r d 11'•3' b 10.11' b 1'•11' d 12 11'-5 d 13'-1' b I Zr 7-1' d Gabled sloped roofs include gables with a roof slope greater than i' in 120. Notes: 1. Above spans do not include length of knee brace. Add horizontal distance from upright to cooler of Mace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.2-120 Allowable Roof Beam Spans For Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 see. wind gust at 120 MPH; using design load of 14 #NSF (43 #USF for Max. Cantilever) 2' x 3' x 0.045' Hollow 2' x 3' x 0.050' Hollow Tilt Lead Max. Spa n'I:I(bending W or deflection'd' Width (fL) 1 & 2 Span 3 Span 4 Span Cantilever Lead Max. Span'L' I (bending V or deflection'd Width (k.) 1 8 2 Span 3 Span 4 Span Cantilever 4 T•5' of 7.2' d 74' d 1'.6' d 4 7'4' d 9'-0' d 7-7 b V-47 0 5 6'41' d 8'-0' d S'-5' b 1'•5' d 5 6'-r d 6.5' d 8'•3' b 1'-5' d 6 6'-W d 7'41' b T-0' b 1.4' d 6 6'•5' d 7'-9' b T -W b 1'4' d 7 F -T d 7'-5' b T.2' b 1'-3' d 7 6'4' d 7'-T b 6'•11' b 1'-3' d a 5'41' it 64-11' b 6.8' b 1'-2' d a 5'•10' d 6'-9' b V -W b 1'-T d 9 6-W d 6-6'6 6.3' b 1'•7 d 9 5'-7' d 6.4' b 6'-7 b 1'-7 d 10 F -W d 6'•7 b 5'•11' b 1'•1' d 10 5'•5 b 6'-0' b 5'-10 b 1'•1 d 11 5' •T b 5'•11' 054-a- 5'' 0 I 1'•1' d 11 1 5'-2- b 5' -9' 0 5-7' b 1'-1' d 12 5'-0- b 5'7 b 5'-5' b 1 1'41' d 12 1 4'-11' b 5.4- b 1 544' 0 1 1'-0- d 2' x 4" x 0.045' Hollow TIN r x 4' x 0.044' a 0.100' Soh Mating Beam Load Max. Span V I (bending 'b' or deflection'd') Width (k.) 1 i 2 span 3 Span 4 Span Ca Nlever Lead Max. Spa I (bending 'b' or deflection'd') Width (k.) 1 8 2 Span 3 Span 4 Span Max. r 4 9'•3' d 114•5' d 11'4' It 1'•11' d 4 10--r d 134.3' d 13'-r d 2'•2* 0 5 S'-7' d 10'-6 b 10-.1' b 1'-9' d 5 7.11' d 1Z4' d UT d 7•0- d 6 8'•1' d 7-r b 7.3' b 1'•5' d 6 775' d 11'•7' d IFr 0 1'-11' d 7 T-0' d 8'•10' b e'•r b 1'•7' d 7 8'-11' d 11'-0- d 10--0' b 1'-10' d 8 744' d 8'-3' b 7'•11' b 1'-0' d a 8'•6' d 1044' b 94•11' b 1'-r d 9 6'•11' b 7'•10' b T-0' b 1'•5' d 9 8'•3' d 94•9" b 7-5' b 14-8' d 10 64•7' b 7'-5 b T-2' b 1'-5' d 10 7'•11' d 9'-3' b 8'•11' b 1'-7' d 11 6'4' b 7'-1' b 6'-10- b 1'4' d 11 1 7'-0' d 8'-10- b F-6- b 1'-7' d 12 64•1' b F. b 6'-0' b 1'4' d 12 7'-0' d S'•5' b 6.7 b V -T d 2'x S". 0.050' x 0.100' Self Mating Beam T x 5' x 0.050' x 0.100' Self Mating Beam 2' x 6' x 0.050' x 0.120' Self Mating Beam 2' x 6' x 0.050'x 0.120' Self Mating Beam Lead Max. Spsn'L' 1(bonding V or deflection W) Width (N.) 1 a 2 Span 3 Span 4 Span Ca ax. Load Max. Span'L' I (banding W or do ection'd') Width (k.) 1 i 2 Span 3 Span 4 Span Cantilever 4 13'4' d 16'•6' d 16'-10' d 1 2'•r d 4 15-7' d112'.1' d 17.8' d 7.2' 0 5 12'•5' d 15'•3' d 15'•7- d 7.6' d 5 14'-6' d d 18'•1' b 7-11' d 6 11'-0' d 14'•5 d 14'-3' b 74' d 6 13'•8' d d 16'-W b 7.7 d 7 11'-1' d 13'-8' d 13'-3' b 7-3' d 7 17-11' d b 15'4' b 2'-8' d a 10'•7' d 12'•10' b 174' b 7-2' d a 17-5' d' b 14'4' b 2'-W d 9 10'-7 d 12'-1' 0 11'-8' b 7.1' d 9 11'.11' d' b 13'-6' b 2'•5' d 10 9'-10' d 11'•5' b 11'•1' b 7•0- d 10 11'-6' d b 17.10' b 2'4' d 11 9'-6- d 10'•11' b 10--7' b 1'-11' d 11 11'-2' d -b 17.7 b 2'•3' d 12 9'•3' d 10'•5' b 10-.1' b 1'•11' d 12 10.10' b b 11'-8' b 2'•0 d *Gabled sloped roofs include gables with a roof slope greater than 1' in 12'. Notes: 1. Above spans do not include length of knee Mace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. Table 2.1.2.130 Allowable Roof Beam Spans For Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 sec. wind gust at 130 MPH; using design load of 16 #ISF (50 VSF for Max. Cantilever) 2' x 3" x 0.045' Hollow 2' x 3" x 0.050' Hollow Tilt Load Max. Sparc V I (bending W or denection'd') Width (k.) 1 i 2 Span 3 Span 4 Span Cant lever Load Max. $pan'L' 1(bending'b' or deflection V) Width (k.) I i 2 Span 3 Span 4 Span Cantilever 4 T-1' d 1 5'-9' d 8'•10' b 1'-5' d 4 6'-11' d 8'-0' d 8'•7- b 1'•5' d 5 6'-7' d 8'•2* d T-11' b 1'4' d 5 6%6' d 7'-11' b 7'-0' b 1'4' d 6 6'-3' d 7'•5' b 7'•2' b 1'-3' d 6 6'•1' d 7'•3' b 7'-0' b 1'•3' d 7 5'•11' d 6-11' b 64' b 1'•7 d 7 5'•10' -d 6'•9' b 6'•6' b 1'-7 d a 5'-8' d 6'-5' b 6.3' b 1'-2" d a 5'•7' d 64' b 6-1' b 1'-1' d 9 5'•5' d 6'•1' b 5'•11' b 1'-1' d 9 1 5.4' 0 5'•11' b 5'•r b 1'-1' d 10 5'-2' b 5'-r b 1 5'•7' b I 1'-1' d 10 5'-W b 5'-0'1'-1- 4'-11' b d 11 a'-11' 6 5'-0' 0 5'4' b t'-0' d 11 4'•10' b 5'4• b S'-2' b 1'-0' d 12 4'-r b 5'•3' b 1 5'•1- 0 I 0--11' d 12 1 4'•7' b I 5'•2' It 1 4'•11' b I 0-.11' d 2' x 4' x 0.045' Hollow Tilt 2' x 4' x 0.044' x 0.100' Self Mating Beam Load Max. Spsn'L' 1(bending War defleolion'd' Width Ik.l 1 i 2 Span3 Span 4 Span Camilever Load Max. Span V1(bond Width (k.) 1 i 2 Span 3 Span in '0' or deflection'd' 4 Span Cantilever 4 0'•10' d 10'•11' d 10'-7' b 1'•r d 4 194' d 17.9' d 17.11' d 2'•1' d 5 9'•7 d 9'-10' b 7-0' b V -r d 5 7.7' d 11'•10' d 11'-10' b 1'-11' d 6 T.9' d 8'•11' b e'-0' b 1'.r d 6 6.11' d 11'-1' d 17-10- b 1'-10' d 7 7'4' d 8'•3' b 7'-1 1' b 1'-6' d 7 V.6' d 10-4' 'b 7.11' b 1'•r d 6 6%11' b T•9' b 7'.6' b 1'-5' d 8 9'-7 d 7-0' b 9'4' b V-8' d 9 F -F b 7'4' b 7'-1' b 1.4' d 9 T-10- d 7.1' b 8'-10- b 1'-r d 10 6'•7 b 6'-11' b 6'-0' b 1'4' d 10 7'-7' d 8'-0' 0 a'4' b 1'-0' d 11 5'•11' tl w -T 0 5'-5' 0 1'-3' d 11 7u' d 8'-3' b T•11- b 1'4' d 12 5'-0' b 6'4' b 6'-1' b 1'-T d 12 7'•1' 0 7'•11' b T -W b 1'•5' d T x 5' x 0.050' x 0.100' Self Mating Beam 2" x 6' x OASV x 0.120' Sell Mating Beam 2' x 6' x 0.050'x 0.120' Self Mating Beam Lead Mu. Span'L' I (bon din Width (k.) i 8 2 Span 3 Span Lead Mm. Span'L' I bends Width (N.) 1 i 2 Span 3 Span WordeflectionVI 4 Span Cantilever Load Max. Spa I (bendin 'b' or do sctiorl'd X. 4 Span Cantilever Width (f .) 1 i 2 SpanM14'-Ilr 4 12'•7 d 154•7 d 16'-1' d 2'-7' d 4 14'-11' d 104' b 18'•10' d 7.0' d 5 11'-10' d 14'-r d 140-9' b 2'-5' d 5 13'-10- d 15-6' b 16'•11' b Z•10' d 6 11'-7 d 13'•7 d 13'4' b Z-3' d 6 13'-0' d 14'.2- b 15'-5' b 7-0' d 7 10.7' d 17.10' b 1204' b 7.7 d 7 12'•5' d 17-2' b 14'4' b Z -V d 6 10•1' d 11'-11' b 11'•7' b 7-1' d a 11'-10' d 17.3' b 13'-5' b 7.5' d 9 7-r d 11'-3' 0 10-.11' b 1'-11' d 9 11'-5' d 11'•7' b 17-r b 74' d 10d 9'-10' b 10--r 0 10-4 b 1'•11' d 10 10-.11' d -b 11'-11' b 7-7 d 8'•5 b 9'4' b 9'-1' b 1'-9' d 1'-10' d 11 10-•r D 11'•10- 0 11'-5' b I 7.7 d 12 8'•r b 7.7 b 7.5' b 1'-10- d 12 10--1' b 11'4' b 16-11' b 7-1' d Gabled sloped roofs include gables with a fool slope greater than I'm 17. Notes: 1. Above spans do not Include length of knee brace. Add horizontal distance from upright to center of brace to beam corclection to the above spans for total beam spans. - 2. Spans maybe interpolated. Table 2.1.2-140A Allowable Roof Beam Spans For Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 sec. wind gust at 140A MPH; using design load of 19 #ISF (58 OISF for Max. Cantilever) 2' x 3" x 0.045' Hollow 2' x 3' x 0.050' Hollow TIN Load Max. Span VI (bending'b' or deflection'd' Width (k.) 1 i 2 Span 3 Span 4 Span Ca Max. Load Max. Span 1: / (be ndin W or deflection'd Width (?Ll 1 8 2 Span 3 Span 4 Span C. Max. ilever 4 6•9' d 844' d 8'4' b 1.4' d 4 6'-r d B'•2' d 7'-11' b 1'4' d 5 6'-3' d T -W b T-3' b 1'•T d 5 6•2' d 7'4' b T-1' b 1'-3' d 6 F-10- d 6'-10' b 6'-7' b 1'•7 d 6 5'•9' d 6'-0' b 6.5' b 1'-2' d 7 5'•7' d 64' b F-1' b 1'•2' d 7 6-6' d 6'-2' b 5'•11' b 1'-1' d 8 5'4' b 6•11' b 5'-9' b 1'•1' d a 5'-7 b 5'-9' b 5'•7' b 1'•1' d 9 4'-11' b 5'•7- b 5'-5' b 1'-1' d 9 4'-10' b 5'-5' b 5'•3' b 1'-0' d 10 4'-9' b 5'4' b 5'•1' b 1'-0' d 10 4'•r b 5'-2' b 4'-11' b 0'-11' d 11 4'-6 b 5'•1' b 4'-11' b 0'-11' d 11 4'-5' b 1 4'.11' b 4'•9' b l 0-11' d 12 1 4'4' b 4'-10' b 4'-a- b 0'-11' d 12 4'-3' b 1 4'-r b 1 4'-7' b 1 0.11' d r x 4' x 0.04S' Hollow Tilt T x 4' x 0.044' x 0.100' SON Mating Beam Lead Max. Spon'L' / The ndin 'b' or deflectlon'd Width (k.) 1 8 Z Span 3 Span 4 Span Cantilever Lead Max. Span'L' I (bending 'b' or denection'd Width (K) 1 i 2 Span ' 3 Span 4 Span Cantilever, 4 64' d 10-.1' b 7.9' b V-6- d 4 7•9' d 12'4r d 17-7 b 1'-11' d 5 7'-r d 6.11' b 84-W b 1'•7' d 5 7-0' d 11'•2' d 10'-10' b 1'-10' d 6 7'-3' d 8'-2' b 7'-11' 0 V -W d 6 6-0' d 10-.3' b 7.11' b 1'•9' d 7 6'-10- b 7'•7' b 7'4' b 1'•5' d 7 8'-1' d 9'•6' b 9'•2' b 1'-8' d a 64' b T-1' b 6'-10' b 74' d a T-9' d 8'-11' b 8'-7' b 1'-r d 9 5'•11' b 6'-0' b 6'-0' b 1'4' d 9 T•5' d 9'4' b 8'•1' b 1'-0' d 10 5'-0'b 64' b 6'-2' b 1'•7 d 10 T-1' b T-11' b 7'-0' b 1'-0' d 11 5'-5' b 1 6'4' b 5'•10' b 1'-T d 11 6-9' b 1 T-7' b 7.4' b 1'•5' d 12 5'-T b 1 5'-10' b 5'•7' 6 I 1'-2' d U 6.-T b 1 7'•3' b 7'-0- b 1 1'•5' d 2" x 5' x 0.050" x 0.100' Self Mating Beam 2" x 6' x OASV x 0.120' Sell Mating Beam Lead Mu. Span'L' I (bon din Width (k.) i 8 2 Span 3 Span 'b' or deftection'cri 4 Span Cantilever Lead Max. Span'L' I (be ndin 'b' or deflection'd Width (k.) 1 6 2 Span 3 Span 4 Span Camilever 4 17.1' d 14'-10' d IT -V b I 7-0' d 4 14.1' d 10.54 if 104' b 7-11' d 5 11'•2' d 1TAW d 13'•5' b Z-3' d 5 13'-1' d 16•1' b 15-6' b 2'-8' d 6 10-.6' d 12'-0' b 17-3' b 7.7 d 6 174' d u'-0' b 14'.2- b 7-6- d 7 9'-11' d 11'-9' b 11'4' b 2'-0' d 7 11'-6' d 137 b 17-2' b 2'•5' d a 7-7' d 19•11' b 10'•7- b 1'-11' d 8 11440 d 12'•9' b 17.3' b 2'-3' d 9 7-2' d 10'4' b 10'-W b 1'-11' d 9 10'•9' b 11'•11' b 11'•7' b 2'-0 d 10 8'•9' 0 9'-10' b 9'-0' b 1' -10' d 10 10'-2' b 11'4' b 10'-11' b 7.1' d 11 8'•5 b 9'4' b 9'-1' b 1'-9' d 11 7.6' b 10'-10- b -0 10-' b 7-1' d 12 - 8'•0' b 6'•11' b 8'-0' b 1'•a' d 12 7.3' b 10'•5' b 10--0' b I 1'-11' d Gabled sloped roofs include gables with a rod slope greater than 1' in 17. Notes: 1. Above spans do not include length of knee Mace. Add horizontal distance from upright to center of Mace to beam connection to the above spans for total beam spans. 2. Spans may be interpolated. <o r. C1 � N aM N V J r` J LL^r, E `^0 U Cri C= m P/� b v < troll CiJ � d LL 1 N a O � p goo ro+ L V" I m W d x 0 >',O w c IICC 1773 W ro .III ^ LL W r�JY E e�v1 m �v i J � W n F � J Q (1) D X Z > M 0 Z0 U(9.(-)ZtnWZZ C0 0 C00 03 Q= W J UH W W -�_ a0 W J U U N- IYDQ.}ILLI- oNj=H_jM W Q 0) LL in O _ O U Z 04 Q J Q JC• N -v . 7.9( ,SE SHEET 7, 09-15-2004 OF 10' r Table 2.1.4.110 Allowable Spans For Miscellaneous Framing Beams Used in Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 second wind gust at 110 MPH velocity; using design load of 12 #ISF Aluminum All.. 6063 TA Single Self -Mating Beams Tributary Load Width V -V T-0" 9'-0" 9'-0' 10'-0"1 11'-0" 12'-0" 13'-0' 1 14.4- 1 15'-0" Allowable Span'L" I bendin 'b• or deflection'd' 2" x 4" x 0.044" x 0.100" 9'-11• d 9-5' d 8'.11' d 8'-0' d 8'4' d 8'-1' d 7'-10' d 7'6' d 7'-5- d T-3' d 7'-1' b 6'-10- b 2" x 5" x 0.050' x 0.100" 17-3' d 11'-8' d 11'-2' d 101-8. 0 10'4' d 19-W d 9-9' d 9'6' d 9'-3' d 9'-0' d 8'-9' b 8'4' b 2" x 6' x 0.050" x 0.120" 14'-40 d 13'-80 d 134-0- d 17.6" d 12'•1' d 11'-9• d 11'-5- d 11'•1' d 101.10" b 101-5" b 10'-1• b 9'-10' b 2" x 7" x 0.055" x 0.120" 16'4' d 15'•6' d 14-10' d 14'•3' d 13'-9" d 13'-4' d 12'-11' d 12'-0' d 17-Y b 11'-9' b 11'-5' b 11'-1' b 2" x 7" x 0.055" wl insert 19-9' d 18'-9' d 17'-11' d 1 T-3- d 16'6" d 16'•' d 15'-8' d 15'-3" d 14'•11" d 14'.7- d 14'•3' d 13'•11' d 2" x 8' x 0.072" x 0.224" 20'-3' d 19'-3' d 18'•5' d 17'-8• d 17'•1' d 16-1 d 16.1' d 15'-8' d 15'-3' d 14'-11' d 14'-1 d 14'-3- b 2" x 9" x 0.072" x 0.224• 22'-3' d 21'-1' d 201-2" d 19.5' d 18'•9 d 18'•2' d 1T -e- d 17'-21 d 16'-9• d 16'4• d 15'-11' b 15'6- b 2" x 9" x 0.082" x 0.306" 23'-8' d 22'-5' d 21'-6• d 20'-8' d 19-11' d 19'4' d 18'-9' d 18'-7 d 17'-10• d 1 T-5' d IT -I" d 16'•6' d 2" x 10• x 0.092" x 0.369" 27'-8' ill26'4- d 25'-2" d 24'-2' d 23'4- d 22'-0' d 21'-11• d 21'•5' d 20'-11' d 20'-5' d 19-11" d 19-7- d Double SeO•klating TNbuta Lwd Width Beams 6'-0" 7.4- 8--0" 9'-0' 10'-0" 11'-0" 12'-0' 57 1 14'7 I 5'-0" I 6'-0" I 121-0" Allowable Span'L' 1 b ding b' or deflection'd' !" z 8' x 0.072" x 0224" 25'-6• dl 24'-3' ill 274' dl 22'-3' ill 21'-6" d !" •9' tl 19-3" it18'•10' d 18'-5' ill 8-0' 7 J' '-5di •8" ill21'•1• d 20'7- d 29.2- d 19•90 !" x 9" x 0.072" a 0.224" 221.11' d 26'21 d 25'-5" d 24 027d 9' x 9' x 0.082" x 0.306" Z9 -9 d 28•3- di 27'-1" di 26'-0• di 25'4- dj 24'4' di 23'6' di 27.0" di 27.5' di 21-11' dj 21'4• di 21'•1- !" x 10" x 0.092" x 0.369" 34'-5' di 32'-8' ill 31'-3' di 37-10 di 29-W ill 28'•1" dl 2214' di 26'•7' di 25'-11' ill 25'4• di 24-10' di 24'4' Double Self -Mating Tributary Load Width Beams d 7'6- d 7'•5• d 7'-3' b 6'•11' b T-9' b 6'•7' b 6'4- b 9'-5' d 8'-11' d 8'6' d 8'-2' dV222T with 2 x 4 SMB added 11'-8' d I VA' tl 101-7' d 101-2" dd 9.6' d 9.3' d 8'-11' b 8'6' b 8'4• b 8'-1- b 7'-10' b to Top or Bottom 6'-0" 1 7'-0" 8'-0" 9'-0" 10'-0' 11'-0" 17-0' 1 13'-0' 1 14'-0" 1 15'-0' 1 16'-0" 1 17'.0 - (perpendicular to Webs) Allowable Span V 1 bendin 'b' or deflection'd' 2' x 8' s 0.072" x 0.224' 28'•11- d 27'-7' d 26'4' d 25'4' d 24'•5- d 23'-8- d 2' d 27.5' d 21'•10' ill21.4' ill201-11• ill20'-6' d 2" x 9" x 0.072" x 0224' 31'-7-d 29-11' d 28'-8- d 27'•7- d 26'•1 d 25'-9' d 25'•0" d 24'-5- d 23'-9' d 23'-3' d 27.9- ill22'4- d 2" x 9" x 0.082" x 0.306' 33'-1- d 31'-5- d 30'-0- d 28'-10' d 2T-11' d 2T -W d 26'•3- d 25'•7- d 24'-11• d 24'4- d 23'•10' d 23'4' d 2' x 10' x 0.092" x 0.369" 37'•11' di 35'-11' ill 34'-5- ill 33'-1" di 31'-11- ill 30'-11• di 30'•1' ill 29'-7 ill 28'-7' di 27'-11' di 274• di 26'-9' d uaonee aropee room mcmoe gaones wrm a roor scope greater man i- in lr. Note: 1. II is recommended that the engineer be consulted on any carrier beam Ilial spans more than 35' 2. Spans are based on 110 M.P.H. wind bad plus dead load for framing. 3. Span is measured from carrier of connection to fascia or wall connection. 4. Above spans do rat include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. S. Spans may be interpolated. Table 2.1.4-120 Allowable Spans For Miscellaneous Framing Beams Used in Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 second wind gust at 120 MPH velocity; using design load of 14 #ISF aluminum All.. Mat T1. -Single Salt -Mating Beams Tribute Lwd Width 6'-0" 7'-0" 8%0- 9.4- 10'-0" 11'-0"1 17-0• 1 13'-0" 1 14'-0" 1 15'-0' I 16'-0" 117%0 - Allowable Span V 1 bendin b' or de8ection'd' 2" s 4' z 0.044" x 0.100" d 7'6- d 7'•5• d 7'-3' b 6'•11' b T-9' b 6'•7' b 6'4- b 9'-5' d 8'-11' d 8'6' d 8'-2' dV222T 2" x 5"10.050" x 0.100" 11'-8' d I VA' tl 101-7' d 101-2" dd 9.6' d 9.3' d 8'-11' b 8'6' b 8'4• b 8'-1- b 7'-10' b 2"x 6- x 0.050" x 0.120' 13'-8• d 17-11" d 17-5' d 11'-11' dd 11'•21 d 10'-10' b 10'-S' b 10'-0- b 9-8' b 9'4" b 9-1' b 2"x 7" x 0.055" x 0.120' 15'-6' d 14'.9' d 14'-1' d 13'-T dd 17.80 d 17-2• b 114-F b 11'-3• b 10'•11" b 101-1 b 10'•3' b 2" x 7" x 0.055• wl Insert 18'-9' d 17'-10' d 1T.0' d 16-5• d d IF4' d 14'•11' d 14'-6' d 14'-' d 17-10' d 13'-6• d 13'•3' d 2" a 8" x 0.072- x 0224" 19.3' d 18'-3" d 1214' d 16'-10• d d IF.9" d IT -7 d 14'-10' d 14'-6• d 14'-1" b 13'-7- b 13'-3' b 2^ x 9' x 0.072' x 0.224" 21'-1' d 20'•1- tl 19'•2• d 18'•5• d' d 17'-3' d 16'-9' d 16'4' d 15'-9' b 15'-3' b 14'.9' b 14'4• b 2" x 9' x 0.082" s 0.306" 22'-5' d 21'4' tl 2101.5' d 19'-7- d• d 184' d 17'•10' d 17'4' d 16'-11• d 16'-7' d 16'-Y d 15'•9' b 2" x 10" x 0.092" s 0.369" 26'4" d 24'-11' d 23'•11' d 27-11' d d 21'-6• d 201-11. d 20'4' d 19.10• d 19-5' d 18'•11" d 18'-7' d Double Seff-Mating TNbuta Lwd Width Beams 6--0" 7'-0' 8'-0' 9--0- 10'-0" 11'-0" 12'-0'j 13'-0' I 14'-0" 1 15--0' 1 16'-0" I 17'-0" Allowable Span •L" I bendin b' or deflection'd' I" x a" x 0.072" x 0.224" 24'-3' ill 23'•0- ill 22'-0' d 21'-2' d 20'•5' d 19'-10' d 19.3• d 18'-9' d 18'-3' d 1T-10' d 1216' d 17'•1' C x 9' x 0.072- x 0.224" 26'-7• d '-3 25- d 24'-Y ill23'•3' d 27.5- ill21•9 d 21'-1' d 20'-7- di 201-1' di 19-7- di 19-2- di 18'-9- !" x 9' x 0.082" x 0.306" 28'-3• d 1 26-10' di 25'6- di 24'-9' di 23'-10' di 23'-1' dl 22'•5• di 21'-10- di 21'4' di 201.10" di 20'•5' di 19'•11' !" x 10" x 0.092" x 0.369" 37-8' di 31'-1' di 29.8" di 28'•7' ill 27'-7' di 266• dl 25-11' d 25-7 di 24'6' di 24'-1' ill 23•1 dl 23'-1' Double Self -Mating Tributary Load Width Beams 8'-11' d 8'6' d 8'•' d 7'-10' d 7'•7' d T4' d 7'-1' b 6'-9' b 6'-T b 6'4' b 6'•1' b 5'•11' b with 2 x 4 SMB added 11'•2- d 10'•7' d 10'-1' d 9'-9' d F -S" d 9'4" d 8'-9' b 8'•5' b 8'•1' b 7'-10' b T-7- b 7'4' b to Top or Bottom 6•-0" 1 7'-0" 1 8'-0' 1 9'-0" 1 10'•0' I 11'-0" 1 12'-0" 1 13'-V 1 14'-0" 1 15'-0" I 16'-0" I 121-0" (Perpendicular to Webs) Allowable Span V I be ding 'b' or deflectlon'd' 2• x a' x 0.072" x 0224' 27'•7' di 26'-2" di 25'-0' di 24'-1' d 23'-3' d 276• d 21'-10' d 21'•3- ill20'-9' d 20'4' d 19'•10' d 19'•6' d 2- x 9' z 0.072- x 0.224" 27-11' d 28'•6' d 27'•3' d 26'-2' d 25'•7 d 26.6' d 23'-9' d 23'-' di 22'-7' di 22'-1' di 21'-7' ill 21'•2' d 2" x 9" x 0.082" x 0.306• 31'-5' dl 29-10• di 28'-6' di 27'•5' di 26'-6- dl 25'46' di 24'-11' dl 24'•3" di 23'-8' di 23'•2' di 27-8' di 22'-2' d 2" x 10" x 0.092" x 0.369' 135'-Il' di 34'•2' di 32'•8' dj 31'•5' dj 30'4' di 29'-5" ill 28'•7' di 221-10' ill 27'•2' di 26•6' di 26-11' di 25'-5' d Note: 1. It Is recommended that the engineer be consulted on any carder beam that spans more than 35 2. Spans are based on 120 M.P.H. wind bad plus dead bad for framing. 3. Span is measured from center of connection to fascia a wall connection. 4. Above spans do not include length of knee brace. Add horizontal distance from upright to center of Mace to beam connection to the above spans for total beam spans. 5. Spans may be interpolated. Table 2.1.4-130 Allowable Spans For Miscellaneous Framing Beams Used in Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 second wind gust at 13OMPH velocity; using design load of 16 #ISF el .....:....... eu..., ana3 r� Single Self -Mating Beams Tributary Load Width 6'-0" T-0" I 8'-0" I 9'-0" 1 10'-0' 1 11'-0- 12'-0" 1 13'-0' 1 14'-0" 15'-0' 1 16'-0" 121-0' Allowable Span Y' I be ding 'b" or deflection 'if 2" x 4' x 0.044" x 0.100" 8'-11' d 8'6' d 8'•' d 7'-10' d 7'•7' d T4' d 7'-1' b 6'-9' b 6'-T b 6'4' b 6'•1' b 5'•11' b 2" x 5" x 0.050" x 0.100" 11'•2- d 10'•7' d 10'-1' d 9'-9' d F -S" d 9'4" d 8'-9' b 8'•5' b 8'•1' b 7'-10' b T-7- b 7'4' b 2^ x 6' x 0.050• x 0.120" 13'-0' d 17-5' d 11'-10" d 11'-5' d 10'•11' d 10'•7' b 10'-1" b 9-9- b 94' b 9'•1' b 8'-9 b 8'6" b 2" x 7" x 0.055' x 0.120" 14'-10' d 14'-1' d 13'-6- d 1Z-11' d 176' b 11'-11' b 11'-5' b 10'•11' b 101-7' b 10'-'b 9'-10- b 9'-7' b 2" x 7" x 0.055" w/ insert 17'-11' d 17'-0' d 16'-4- d IF -8' d 15'•2- d 14'•8' d 14'-3' d 13'-10' d 13'-6' d 13'•3' d 12'•11' d 17-8' d 2" x 8" x 0.072" x 0.224" 18'-5' O 17'4• d 16'•9- d 16'•1' d 15'6' d 15'-0' d 14'•7' d 14'•2- b 13'-7' b 13'•21 b 12'-T b 12'-4- b 2" x 9' x 0.072" x 0.224" 217-' d 1914' d 1814" d 17'-8' d 174-0• d 16'•6' d 15'•11' b 1T.4" b 14'-9' b 14'-3' b 13'-10' b 13'•5' b 2" x 9" x 0.082" x 0.306' 21'-6- d 20'-5- d 196' d 18'-9' d 18'-1' d 17'•7' d 1T•1' d 16'-7' d 16'-2' d 154•8- b 15'-2' b 14'-9• b 2" x 10" x 0.09' x 0.369" 25'-Y d 23'-11' d 22'-10' d 21'-11• d 21'•3' d 20'-7' d 19'•11' d 19'-5• d 18'•11' d 18'-6' d 18'-21 d 17'-8' b Double SeN44ating Tributary Load Width Beams 6--0" T-0' 5.0 F-0" 10'-0" 11'-0" 12'-0' 13'-0' 1 14'-0" 1 15'-0• I 16•-0' I 121-0' Allowable Span *I: 1 be ding •b' or deflection'd x 8' x 0.072" x 0.224" 23'•2' d 22'-0" d 21'•1' d 201-3' d 19'-7• d 18'-11" d 18'•5• tl 1 T-11- d 121.6' d 17'•1' d 16'-9' d 16'•5- '" x 9' x 0.072" x 0.224" 25'•5' d 24'-2' d 23'•1' d 22'•3- d 21'•5- d 201.9- d 20'•' d 19-2' di 18'•9• d 18'4' d 17'•11• x 9' x 0.082^ x 0.306^ 27'-1- di 25'6' di 24'•7- d 23'-8' di 22'•10- ill 27-1' di 21'4- di 20'-11• di 20'•5- di 19.11' d 19'-6- d 19.1- " x 10" x 0.092" x 0.369^ 31'-7 di 29'4' ill 28'•5' d 27'4- di 26'4- ill 25'-6- di 24'•10- di 24'-2- di Z3'-7- di 23'•0• di 22'-6- d 27-1' Double Self -Mating Beams Tributary Load Width with 2 x 4 SMB added to Top or Bottom 6'-0' 7'-0" 8'-0" 9'-0" 1 10'-0" 1 11'-0' .1 12'-0" 1 13'-0" 1 14'-0- . 15'4" 16'-0" Ir -0 - '(Perpendicular to Webs) Allowable Span"CTOe1101n 'b' of'd4flecdon'd' - - ---'� - •__ _.. _ . 2" x 6" x 0.072" x 0.224' 26'4' d 25'-0' d 27-11' d 23 lrr d '27-3' di -2l'-6' ill20'•11• d 20'4' ill19.10' d 19-5' d 18'•11• d 18'-7' d 2' x 9" x 0.072" x 0.224" 28'-8' d 27'-3• d 26'-0" d 25'•0" d 24'-2' tl 23'•5' d 22'-9 d 27-2"d 21'-7' d 21'•1' d 2016' d 2101.3' d 2" x 9' x 0.082" x 0.306' 30'-0- d 28'-6- d 27--3' d 26'•3" ill25'4- d 24'•6' d 23'-10• d 27-' d 27-0- d 22'•' d 21'-8' d 21'-7 d 2"x 10" x 0.092' x 0.369" 1 34'-5' di 37.6" ill 31'-7 ill 30'•1• ill 29'.W di 28'-1• di 27'4• ill 26'-1 dl 25'.11' ill 25'4' it 24'•10' di 24'4' d ' Gabled sloped roofs include gables with a roof slope greater than 1' In 12". Note: 1. It is recommended that the engineer be consulted on any carrier Imam that spans more than 35' 2. Spans are based on 120 M.P.H. wind bad plus dead bad for framing. 1 3. Span is measured from center of connection to fascia or wall connection. 4. Above spans do rat include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 5. Spans may be interpolated. Table 2.1.4-140A Allowable Spans For Miscellaneous Framing Beams Used in Attached Covers, Fourth Wall Structures, or Freestanding Gabled Carports For 3 second wind gust at 140A MPH velocity; using design load of 19 #ISF er.....:....... eu.... cnex 211 Single Self-MatingTributary Beams 6'-0" T-0- a'-0' Lwd Width 9'.01 10'.V 11'-0" 12'-0' 1 17-0' 1 14'-0' Allowable Span'L' I bending W or deflection'd' 15'-0" 16'4" 17'.0 - " 4" x 0.044" x 0.100" 2 z 8'6' d '-1' 8 d 7'- ' 9 d 7'- ' 5 d '-1' 7 b 6'-9' b 6'6' b 6'-3• b 6'-0- b 6-10' b T-7' b 5'•5' b 2" x 5• x 0.050" x 0.100' 10'-6- d 9-11• d 9'-7' d 9.2' d 6•9' b 8'•5" b 8'-0' b 7'•9' b 7.5- b 7'•2' b 6'-11' .b 6'-9' b 2" x 6" x 0.050" x 0.120" 174- it 11•-8' d I V.2' d 10'•9- b 101-21 b 96' b 9-3' b 8'-11' b 8'-7- b 8'4' b 8'•0' b 2"-10' b 2- x 7" x 0.055" x 0.120' 14'-0' d 174' d 17.9' d 17-1' b 11'-5' b 10%11' b 101.5' b 10'-0' b 96' b 94• b 9'-1" b 81•9' b 2" x 7" x 0.055" cal insert 1 16'•11' d 16•1• d 15'•5- d 14'-10' d 14%3' d 13'-10' d 13'•5- d 13'-1' d 1Z-9' d 17-5' b 12'-0- b 11'-8' b 2" x 8' x 0.072" x 0.224" 1214" d 16'-6- d 15'•9- d 15'-2' d 14'-8' d 14'-1' b 17•6' b 17.11' b 1Z-6• b 17-1' b 11'-8" b 11'4- b 2- x 9" ■ 0.072' x 0224" 19-1" d 18'-1- d 17'4- d 16'-0' d 16-0' to 15'-3' to 14'.8' b 14'•1' b 13'-7' b 17-1- b 12'-0' b 12'4' b 2" x 9" x 0.082" x 0.306" 20'-7 d 19-3• d 18'•5' d lr-9- d 17'-1- d •7' -'- b 6d84- 15-5- b 14'•10 b 14'4' b 13'-11' b 136- b65d8 x 10' x 0.092" x 0.369' 23'•9• d 22'-1 d 21'-7" d 20'-9' d 20- d 19 69b 16'-3' b2" Double Self -Mating Beams 6'-0" 7--0" 8•-0' Tributary load Width 9%0" 10'•0" 11'-0' 12'.0 13'-0" 1 111-0" 1 Allowable Span'L' I being'W or deflection'd' 15'-0" 17--o- 16M16'41-d 2" x 8" x 0.072" x 0.224" 21-11• d 20•9 d 19'-11' d 19.1' d 18'6' d 17'•11' d 17'4' d 16'•11' d 16'•6' d 16'-2' d 15'2" x 9" x 0.072' x 0.224" 24'-0' d 27-10' d 21'• 10' d 20'-i 1' d 201.3' d 19'-7' d 19'-1' it 18'-7' d 16'•1' d 1216' d 17'2- x 9' x 0.062" x 0.306" 25'-7' d 24'-J" d 23'•3- d 22'4- d 21'•7- d 20'•11• d 20'-3' d 19.9• d 19'-7 d 18'•10' it 18'2" x 10" x 0.092" x 0.369" 29'6' d 28'•0• d 26'•10'd 25'-9' d 24'-11' d 24'-1' d 23'•5- d 27.10-d 27.3• d 21'-9• d 21' Double Self -Mating W Q N Tributary Load Width /1 N LL. in _J J Beams in LL �+ OQr- U Z Y F O^ wQ�Y,q with 2 x 4 SMB added 41)m o. a o Co CO Oit1^ 1111 W UlcnZ- to Top or Bottom 6-0" 1 7'-0' 1 8'-0" 1 9%0" 1 10'-0" 1 11'-0" 1 17-0" 1 13'-0' 1 14"-0" 1 15'-0" 1 16'-0" 17--o- (Perpendicular to Webs) 2 m W Allowable Span'L' 1 bending'b' or dellectfon'd' 2" x 5"_x 0.072' x 0.22A" 24'-11" d 23'-8" d 27-7- d 21'-9' d 20'-11' d 20'4' d 19-9' d 19'-3- d 18'-9- d 18'4' d 17'-11' b 2" x 9" x 0.072" x 0.224' 27'-1' d 25'-9- d 24'•7" tl 23'•8• d 27.10' d 27.1- d 21'-6' d 201 -it'd 20'•5- d 19'•11' d 19'•5- b 18'-10' b 2- x 9- x 0.062' x 0.306' 28'4- d 26'-11' d 25'•9- d 24'-9' d 23'-11' d 23'-21 d 22'-6- d 21'-11' d 21'-5- d 201.11' d 20'-5" d 20'-0' d 2" x 10" x 0.092- x 0.369' 376- d 30'-10' d 296- d 28'•5- d 27'•5' d 26'-7' d 25'-10' d 25'•1' d 24'-6- d 23'-11' d 23'-5' d 22'•11' d *Gabled sloped roofs include gables with a root slope greater than Vin 121. Note: 1. itis recommended that the engineer be consulted on any cattier beam that spans more than 39 2. Spans are based on 140A M.P.H. wind load plus dead bad for framing. 3. Span is measured from center of connection to fascia or wall connection. 4. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total 5. Spans may be interpolated. �o �ry . ry v J LLN n E H - M Qt U C/7 4-I b V v troll QeDin > >"'a- C3= 1-0000 N O L O ru ,!I ru WCL -X ej Q1;n W b ImIII •r N ^ LL 7 '0 ra0JY 1- LIOa M Q M W � V 00 J e0 w n P J Q D O 2C V L O ___ ZC/)WZ0W I3CCm Q = W J C W mitN UJ 00 W _UCtV- xPDR>_ LL 0 od _5 2 W C to LL O UZ c011 Q Q 411���i1 AL SHEET 7F 09-15-2004 1 OF 101 W Q N ~ /1 N LL. in _J J in LL �+ OQr- U Z Y F O^ wQ�Y,q C 41)m o. a o Co CO Oit1^ 1111 W UlcnZ- J Om0X ro I uj U La u C ZNW 2 m W -+ O CU J a� 411���i1 AL SHEET 7F 09-15-2004 1 OF 101 Table 2.2.1 Allowable Attributable Roof Area per Post for Carports, Patio Covers, and other Open Buildings - ALUMINUM POSTS Example rna Koor was rveeoeo; urea = A; Post bpactng = a-: btruclure Protection = w: A = S x (W/2 + O.H.); if 5' = 10'. W = 24', and O.H. = 7 Oren:'Area' = 140 Sq. Ft. a. For a 9'S Post and 120 m.p.h. wind food of 14 01 Sq. Ft. Hast choices are: 1.7 x 3' x 0.045- Hollow Extrusion 2. AS post saes listed below the T x 3' x 0.045' Hollow Section It. It job conditions dictate a Host hieght of 10'•11• for A • 140 Sq. Ft. and 120 MPH wind zone. then 0T x 3' x 0.0450 Holow Extrusion can NOT be used since 4 can only support a roof area of 114 Sq. Ft. Thus, design must fatally both height and area requirements. Note: 1. Spans may be interpolated. 2. -For free standing covers, multiply above roof areas by 125 (except for 100 MPH). Table 2.2.2 Allowable Attributable Roof Area per Post for Carports, Patio Covers, and other Open Buildings - ALUMINUM POSTS Post Slxe Aluminum Post Aluminum Post Minimum a Knee Brace Screws Hollow Sections Wind Load (MPH) 100 1 110 1 120 1 127 1 130 1 140A 1408 i ISO Attached Cover Uplift' = 10 NSF 1 12 VISE 1 141115E 1 15 NSF 1 16 NSF 1 19 NISf 1 30 NSF Free standing Uplift = 10 NSF I10 NSF 11 NSF 12 NSF 13 NSF 15 NSF 30 NSF Maximum I 10 NSF I 11 NSF I 12 NSF I Allowable Roof Area In S uare Feet for Various Loads on Post Height Load (lbs.) T x 2" x 0.044" Hollow Extrusion or 2" x 2" x 0.045" Snap Extrusion -Aluminum Alloy 6063 T$ 10 Allowable Roof Area in Square Feet for Various Loads on Post ht Load lbs.) 3' x 1" x 0.090" Hollow Extrusion •Aluminum Alb 6067 T$ 206 1 2 147 1 138 1 129 109 1 8'.7-111 346 155 129 111 1 97 811 52 91-10" 1,204 120 I 100 I Do I DU I 75 I 63 I 111•1" 903 911 1 75 1 65 1 60 1 56 I 48 1 3u Height Loa lbs. Z x 3" x 9.045' Hollow Extrusion or 2" x 3" x 0.045` Snap Extrusion - Aluminum lay 6063 T-4 151 la 8'•2' 2.736 274 228 199 182 171 144 91 9'4i" 2.502 2 209 179 167 156 132 63 10'-11` 1,596 160 1331 111 1 106 1 100 1 84 W 12'•T 1,197 120 1 100 1 66 1 80 1 75 1 53 40 Hel ht Load (lbs.) 3' x 3' x 0.040" Roll Formed - Aluminum Alloy 3105 H•14 7 02 10'-0' ,381 23a 1 198 1 170 1 139' 149 1 125 11 9 111$' 1'786 179 1 149 1 128 1 119 1 1 112 1 94 60 13'4 1,359 139 I 116 I 9V 1 93 1 8 I I Ig I 46 15'-0" 1,042 104 1 87 1 74 1 69 1 65 1 55 I J5 Hai ht Lo ad (lbs. 3" x 3" x 0.060" Roll Formed - Aluminum Allo 3105 H-14 362 340 11'-0` 3.600 60300 5 2 5 188 120 12'•10" 2 00 0 25 193 1S0 169 142 90 14'$ _2,1u9 210tis 150 140 131 111 0 15'.6- 1,575 15a 1 1 113 105 96 53 Height Load lbs. 3' x 3' x 0.060" Fluted Hollow Extrusion - Aluminum 6063 T•6 11'•10" 3 408 341 284 43 227 213 179 114 17'-10" 2 556 256 213 183 170 160 13 8 1 '•10' 1,981 1991 !421 124 1 1 •-10 1,491 149 124 t 9 93 78 W Example rna Koor was rveeoeo; urea = A; Post bpactng = a-: btruclure Protection = w: A = S x (W/2 + O.H.); if 5' = 10'. W = 24', and O.H. = 7 Oren:'Area' = 140 Sq. Ft. a. For a 9'S Post and 120 m.p.h. wind food of 14 01 Sq. Ft. Hast choices are: 1.7 x 3' x 0.045- Hollow Extrusion 2. AS post saes listed below the T x 3' x 0.045' Hollow Section It. It job conditions dictate a Host hieght of 10'•11• for A • 140 Sq. Ft. and 120 MPH wind zone. then 0T x 3' x 0.0450 Holow Extrusion can NOT be used since 4 can only support a roof area of 114 Sq. Ft. Thus, design must fatally both height and area requirements. Note: 1. Spans may be interpolated. 2. -For free standing covers, multiply above roof areas by 125 (except for 100 MPH). Table 2.2.2 Allowable Attributable Roof Area per Post for Carports, Patio Covers, and other Open Buildings - ALUMINUM POSTS Example: Find Rod Area Needed: Area ='A'; Post Spacing =5': Structure Projection = W: A = S x (W/2 + O.H.); JVS' = 20', W = 24', and O.H. = 2' then:'Areo' = 280 Sq. Ft. a. For a 1 T•10' post and 120 m.p.h. wind bad of 14 N / Sq. Fl. post choices are: 1. 3" x 3" x 0.125- Hollow Extrusion 2. Ali post sizes listed below the 3' x 3' x 0125' Holm Section b. It job conditions dictate a post ttieght of 20'•7• for A = 280 Sq. Ft. and 120 MPH wind zone• then a 3' x 3' x 0.125' Hollow Extrusion can NOT be used since it can only support a roof area of 216 Sq. Ft. Thus• design must satisfy both height and area requirements. Note: 1. Spans may be interpolated. 2. For free standing covers• multiply above roof areas by 1.25 (except lot 100 MPH). L Table 2.3 Schedule of Post to Beam Size and Number of Thru-Bolts Required Aluminum Alloy 6063 T-6 BeamMinimum Size r Post Slxe V Thru•Bolts La -D-14" 114' a 718" 0 Aluminum Post Minimum a Knee Brace Screws Hollow Sections 150 Wind Load MPH s 100 110 1 120 1 127 1 130 1 140A 1 1406 a'50 Attached Cover Uplift • • 10 NSF 12 S/SF 1 14 NSF 1 15 NSFI 16 NSF 1 19 NSF 1 70 NSF Free Standing Uplift • 10 NSF I 10 NSF I 11 NSF I 12 NSF I 13 NSF I 15 MSF 1 70 NSF Maximum 10 Allowable Roof Area in Square Feet for Various Loads on Post ht Load lbs.) 3' x 1" x 0.090" Hollow Extrusion •Aluminum Alb 6067 T$ 2 0" 5,184 516 432 370 346 346 324 173 0" 3. 8 389 324 8 2 9 59 243 130 0" 3.024 302 2 2 1 2- 2 2 189 t01 0' 2.264 2 199 1 151 151 la 6 ht load lbs. 7' x 3' x 0.125' Hollow Extiuslon -Aluminum Alloy 6063 T$ 7!4'x0.050' ' 6,912 691 57 494 61 461 2 30 1' IS 5.184 18 432 370 346346 2"x 4'x 0.050' 324 17" 4"x 4'x 0.125' 4.07 403 336 286 269 269 252 17' 7 02 2 252 16 202 202 169 101 ht load lbs. 4' x 4" x 0.125' Hollow Extrusion -Aluminum All 6063 T$" 9 312 931 776 665 6 1 621 58 310 5" 6.98{ 698 582 499 466 666233 ' S 432 543 453 388 362 362 340 tat 4.074 407 3d0 291 2 5 t36 Example: Find Rod Area Needed: Area ='A'; Post Spacing =5': Structure Projection = W: A = S x (W/2 + O.H.); JVS' = 20', W = 24', and O.H. = 2' then:'Areo' = 280 Sq. Ft. a. For a 1 T•10' post and 120 m.p.h. wind bad of 14 N / Sq. Fl. post choices are: 1. 3" x 3" x 0.125- Hollow Extrusion 2. Ali post sizes listed below the 3' x 3' x 0125' Holm Section b. It job conditions dictate a post ttieght of 20'•7• for A = 280 Sq. Ft. and 120 MPH wind zone• then a 3' x 3' x 0.125' Hollow Extrusion can NOT be used since it can only support a roof area of 216 Sq. Ft. Thus• design must satisfy both height and area requirements. Note: 1. Spans may be interpolated. 2. For free standing covers• multiply above roof areas by 1.25 (except lot 100 MPH). L Table 2.3 Schedule of Post to Beam Size and Number of Thru-Bolts Required Aluminum Alloy 6063 T-6 BeamMinimum Size r Post Slxe V Thru•Bolts La -D-14" 114' a 718" 0 Minimum Knee Brace' Minimum a Knee Brace Screws Hollow Sections 150 --Attached Cover Uplift • • 10 NSF 1{NSF 15 MSF T x 3" x 0.050' Hallow TO7 x 2"x 0.044' or 2" .20.045' Snap 2" Free Standing Uplift a 2' x 3' x 0.050' (3)118 2" x 4' x 0.050• Hollow 7 x Tx 0.045' Hollow 7 x 3'x 0.045• Snap T' 17 NSF T x 3' x 0.050' (3) N8 Sell Matin Beams 15 13 11 10 136 x 4' x 0.038' x 0.100 3' x 3'x 0.060' Scalloped 2 1'$' x 1'$" x 2'$' Tx Tx 0.050' (3)08 x S- x 0.050' x 0.100 3' x Tit 0.060- Scalloped 2 159 0.0 2" x 3' x 50' (3)118 [2' x 6" x 0.050"x 0.120 3' x 3'x 0.060` Scalloped 2 220 T x 3• x 0.050" (3)N10 x £.0.055"x0.120- 3"x3'x0.093' 3 2 7!4-x0.050'(3)#10 330 x 7•x0.055•x0.120" insert 7x3'x0.093' 3 2 Tx4•x0.050' (3)010 7 x a' x 0.072' x 0.224' 3'x 3'x0.093' 3 2 7!4'x0.050' (3)#12 T !9'x0.072' x0.224' 3'x 3"x0.125' 4 3 £!4x0.050' (3)014 T x 9' x 0.082' x 0.306' 3'x 3'x0.125' 4 1 3 1 2"x 4'x 0.050' (3)#14 7x 10• x 0.092'x 0.369' 4"x 4'x 0.125' 6 4 1 Tx4'x0.050' (4 014 no minimum numoer or minu cons is 141 ' Minimum posUbes n may be used as minimum knee brace '• Fasten w/ external screws or clips. See Details. Table 2.4.1 Footings - Maximum Roof Area foyer Carport Posts Wind Zone (MPH) • 100 110 120 123 130 4 /40A i B 150 --Attached Cover Uplift • • 10 NSF 1{NSF 15 MSF 16 NSF !3 NSF 21 NSF Free Standing Uplift a 10 NSF 10 NSF 111113F 12 NSF N/SF 15 NSF 17 NSF Existing Slab on Grade with unknown reinforcement 22 19 15 15 13 11 10 Isolated Footing Uplift 110 Maximum Attributable Roof Area in Square Feet 123 V-0" x V.0" x V-0' x 510 5143 99 Attached Cover Uplift • • 10 NSF 34 66 32 62 27 52 24 47 14$" x i'$" x 10$' 1,316 132 110 94 86 82 69 63 11-8' x 1'$• x 7-0" 2,039 204 170 146 136 127 107 97 1'$' x 1'$" x 2'$' 2,549 255 212 162 170 159 134 121 2'-0" x T -O" x 2'-0' 2.640 264 220 189 176 165 139 126 2'-0' x 2-0" x Ti' 3,300 330 275 236 220 206 174 157 2'$' x T$' x T$' 4,594 459 383 328 306 287 242 219 2'$' x 2'$" x 3'-0' 5.513 551 459 394 368 345 290 263 Koro areas cesae on auacneo ower upm rceos. Notes: 1. Isolated Footing is a poured concrete rectangular solid (Length x Width x Depth). 2. Slab on grade must be new or in good condition. 3. For free standing rovers, multiply above roof areas by Ole appropriate multiplier from the table below. Pre -Cast Block Footing P,. -..t forth.. hlnrk f se' . 111' . 4• I of 24• hot... -do with 90 a hart rtreanix ertner.t. and haekRll.d to orad. Wind Zone (MPH)- 100 110 120 1 123 1 130 1 140A 150 Attached Cover Uplift • • 10 NSF 12 MSF 14 NSF I 1 S NSF 16 NSF I 19 NSF 21 NSF Free Standing Uplift • 10 NSF 10 NSF 11 NSF 1 12 NSF 13 NSF I 15 NSF 17 NSF 01menstons^ Ratio jibs. S'4" 5'-5- 114" Maximum Attributable Roof Area in Square Feet 4'-7- (11 x II N Bag 1.734 182 152 1 130 121 1 114 1 96 87 421 x 808 Bag 1,819 190 159 135 127 1 119 1 100 91 (3) x SON Bag 1 1,904 190 1 159 1 130 127 1 119 1 100 91 tote: maximum upon on post is cetermnea oy musipying maximum annwtacre nxn area x appseo nae. Example: Post tributary roof area = 77', Applied bad for 110 MPH wind zone • 24NSq. Fl.. Uplift on post = 77 x 24 = 1,5400 Roof Area Conversion Multipliers from Attached Cover Roof Areas to Free Standing Roof Areas Wind Zone 1 100 1 110 1 120 1 127 1 130 1 140A &61 B 150 Roof Area Multi Ile 1.00 1.20 1.27 1.25 1.23 1.27 7 23 Tnhla 7 d 7 llnlift Raeietanra of [:error! Fnnfinn Concrete Dead Weight = 1.50' x 1.50' x 2.00' x 150 NG = 6750 Soil Resistance = 4 x 1.6 x 2.0' x 75 N/CF(112(tan(33) x 7)) = 5550 Total = 1.260 N Concrete Dead Weight = 1.67'x 1.67'x 2.50'x 150 NC - 1.046 N Sol Resistance = 4 x 1.67x 2.50'x 75 N/CF(1I2(tan(33) x 2.50')) = 1.017 a Total = 2.056 # Concrete Dead Weight = 2.00'x 2.00' x 2.W x 150 NCF = 1.200* Soil Resistance - 4 x 2.00'x 2.00' x 75 NICF (112(tan(33)' 2.001 = 7790 Total = 1.979 N Concrete Dead Weight = 2.00'x 2.00'x 2.50'x 1 = 1.50-0 Soil Resistance = 4 x 2.00'x 2.50'x 75 NICF (112(tan(33)2.507 = 1.2170 Total = 2.717 N Concrete Dead Weight = 2.50'x 2.5V x 2.50' x 150 XJCF 1, N Soil Resistance = 4 x 2.50' x 2.50'x 75 NICF (112(tan(33)' 2.507 = 1.5220 Total = 2.666 N Concrete Dead Weight= 2.50'x 2.50'x 3.00' x 150 NICF = 2.9-1311 Sod Resistance = 4 x 2.50'x 3.00'x 75 NICF (112(tan(33)' 3.007 = 2.1910 Total = 5.004 N Concrete Dead Weight = 3.00'x 3.00 x 3.00' x 150 N F = 4,0500 Sod Resistance - 4 x 3.00'x 3.00' x 75 N/CF (1/2(tan(33)' 3.00) = 2m(5300 Total = 6.6800 Concrete Dead Weight = 3.00'x 3.00 x 3.50' x 150 NICF 4.7250 Soil Resistance = 4 x 3.00'x 3.50'x 75 #ICF (112(ton(33)' 3.507 = 345809 Total = 6.305 0 Example: For 140 MPH wind zone, maximum uplift for free standing carport = 15 NSF. Allowable roof area for 3' x 3' x 3" is 6,68091 150/SF = 445 SF thus, the allowable roof area on 3' x 3' x 3' footing for 140 MPH wind zone. E' exposure calegory is 445 SF; for'C' exposure category. the allowable rod area = 445 SF 11.21 = 368.77 SF use 369 SF. Table 2.5 Maximum Allowable Spans I Heights for Aluminum Pans Utility Shed Roof or Walls Span I Heights calculated using design loads in compliance with ASCE-7 section section 6.5.12.4. 1.114" x 12" x 0.026" Riser Panel 1.114" x 12" x 0.032" Rizer Panel Wind Zone Wind Zone Maximum Span I Height 1 9 2 3 span 4 span Max. Span Cantilever Wind Zone Maximum Span / Height 1 i 2 3 span 4 span Max. Span Cantilever 100 M.P.H. 4'-11" 6'•0• 6'•2' V-11' 100 M.P.H. 5'•3' V-6- 6'40 2'-0" 110 M.P.M. 4'-7" 5'•8" V-9• 11•91 110 M.P.N. 4'•11• CA" 6'-T 1'•11' 120 M.P.H. 4'4' S'4" 5'-5- 114" 120 M.P.M. 4'-7- 5'$• V-10• 1'•10- 123 M.P.H. 4'4• V-1' 5'-T V-7' 123 M.P.H. 4'.5- 5'-5' 5'-6' 1'$" 170 M.P.H. 4'•1• 5'•t' 5'-T 1'-7" 130 M.P.M. 4'•5" 5'•S" 5'$' i'$- 140 M.P.N. TAI' 1'•10' 4'•11• '1'$- 1{0 M.P.M. 4'-T F -T 5'-3* 1'•7' ISO M.P.H. T-9' /'-r 44$• 1'•5' 150 M.P.H. J'-11' 4'•11' S'-0' i'•7• I Air x 12' x 0.026' fluor Panel 1.714" x 12' x 0.032' Cleated Panel 1-112" x 1 T x 0.03£ Rizer Panel Wind Zone Wind Zone Maximum $Pan / Height 1 9 27 span 4 span Max. Span Cantilever Wind Zone Maximum Span I Height 1 11 2 7 span 4 span Max. Span Cantilever 100 M.P.M. V-10" 7'-T 7'4' 2'-3" 100 M.P.H. 6.3' 7'•11' 8'•1- 7.5" 110 M.P.H. 5'•5" 6'•9' V-10• 2'•1' 110 M.P.N. V-10" 7'-3' 7'4- 7-3- 120 M.P.H. 6•1• 6'4' V- 120 M.P.M. 5'$" 6.9- 6-11' 7-T 127 M.P.H. 4'40• 5'-11' 6'-1" V-11" 123 M.P.N. F -T V-5' 6'-r 7-0" 170 M.P.H. 4'$' V-11" V-10' 1'-10' 170 M.P.H. V-7 6-5" 6'•r 7-0' 140 M.P.M. 4'$' V-9' 5-10' 1'-10' 1140 M.P.N. 4--11- 6'-T 6'-3- 11•11' . 150 M.P.H. 4'-5" T -T 1 5'-7' 1 V-9' 1150 M.P.H. 4'•9' 1 5.10' V-11• V-10' 1.314' x 12" x 0.026' Cleated Panel 1.714" x 12' x 0.032' Cleated Panel Wind Zone MPH Wind Zone Maximum Span I Height 192 Max. Span 3 span 4 span Cantilever Wind Zone Maximum span I Height 1&2 Max. Span 3 span 4 span Caol4aver 100 M.P.M. T$' V-7' 9'-9' 7410 100 M.P.M. 8'4• 10'4• 10'-6• 3'•T 110 M.P.H. 7"-1' 8'-11' 9'-t'. _ M.P.H. T•9• .9-17. 9'-10' 7•1 t 120 M.P.H. 6'$" 8'•5' V-7' 7.7" 120 M.P.H. 7'-7 9'-1' 9'•3' 7.9' 123 M.P.H. 6•3' 8'-0' 8'-2" 2'-5" 123 M.P.N. F-9' 8'$" 81010' 2'$' 130 M.P.H. 6'4T 7'-5• 7.10' Z4' 130 M.P.H. 6'-9' 8'$' 8'-10' Z$' 140 M.P.H. 6'-0• T-5• TAU" 2'4" 140 M.P.H. V-6- 8'•3" 8'•5' 7.6" 150 M.P.M. 1 5'•9' 7'•1" I T-3' 2'-3' 1150 M.P.N. 6'-2' TAW 3' x 12" x 0.026' Panel 3" x 12" x 0.032' Panel Wind Zone MPH 100 110 120 Wind Zone Maximum Span / Height 192 7 span 4 span Max. Span Cantilever Wind Zone Maximum 114162 Span Span / Height 3 span {span Max. Cantilever 100 M.P.M. 10'•11• 1£•11- 14'•7 4'-0' 100 M.P.N. 11'-9" 14'-11- 15'-3• 4'4T 110 M.P.N. 10'-T 13'•1' 13'4- 3'-10• 110 N.P.N. 10.11` 14'•1- 14'4- 4'4T 120 M.P.H. 9'•r 17-3' 17.6- 3'$' .P.H. 10'4' 13'•2' 13'•6• 3'•1 V 123 M.P.H. 9'•T 11'4` 11'-7'. T -S' 123 M.P.M. 9'-10' 12'•2' 17.5' 7.9' d 8'-9• 10'•9• 10'-11• 3'-3' 130 M.P.H. 9'4• 11'•7' 11'-10• 3'$' N55 10-9' 1(7.11• 7-3' 140 M.P.H. 94• 1V -r 11'-10" 3'-6- 17-T d 8'•3' 10'-3' 10'-5' 3'-2' 150 M.P.H. 8'•11' 11'•0• 11'•3' 3'4• Room Roof Panel span •'W" as shown on drawings. 2" x 4" x 0.050" Patio Extruslon - Note: 1. Install T x T x 0.036' Extrusion at Midspan increase span by 25% maximum shed area. 2. Spans may be interpolated. Table 2.6 Allowable Stud Heights Utility Sheds Framed With Hollow Aluminum Extrusions 6063 T-6 Aluminum Alloy (Fb is 15,000 psi) Note: 1. The above listed allowable heights are measured from the bottom of lop plate to top of bottom plate. 2. Spans may be interpolated. S Rjjjt* D PV►H 0t Ser%foe CIO" r� o � N d m Ot N J ^ i J LL�^E ~ `^ 0 u V) van t Cly i--) m to v < V 'I t 7 CV2 ' N LL r N __j> O Pro C=O 0 p 00 -1 m w c IIIE-=I c ^ U. a ■III V l J Y ^ 110 r= N Co �v '4 J W J od Q (n D C Z > 20 0 Z 0 Z_(✓)WZQw F300 Pco Q=WJ0,' W f nCr 133-ItN WHQOU W J U C N- CPiE}UL 0 UL O < W 0 Cn W W � .T _ O U Z (714 D Q J Q AL �rI HEET- 'J 7'� 09-15-2004 OF 101 Maximum Allowable Hei ht'M' I Deaedion'd' or Bendin 'b' Wind Zone MPH 100 110 120 123 170 140! 8 B 150 Applied Load 12 NSF 140 13F 17 NSF /8 N/SF 19 N/SF 23 NSF 26 NSF Load Width 2" x 7 x 0.044' Hollow Extrusion 16" 10'•111• d 10'•3" d I 9'-r d 1 9•5" d 1 7•3' d V-8• d 64" d 24' 9'•5' d 8'-1V d 1 8'•5' d 1 7'•7" d I 8'-1• d 1 T -r d 1 T-3' d Load Width 2' x 2" x 0.055' Hollow Extrusion 16' 11'•5• d 10'•10' it 1 10'•7 d 7-11- d 9'•10• d 1 9'-2• d8'•10• d 24" 9'•11• d 9'$• d V -IV d 8'-0' 0 6.7• d 8'•0' d 7'-9' d Load Width 2" x 3" x 0.045" Patio Extrusion 16' IT -T d 114'-5• d 13'•3• d 17-11' d 17-T d 17'$• d 24" 1T-3' d 17-7• it 11..9.d I 10'$• d 1 11'4• d I IW a- 0 lo -T It Load Width 2" x 4" x 0.050" Patio Extruslon 16";.7' d 18'$" d 1T$- d iT-T d 16'•10' it15'-10" d 1T -T d 24" 1T•V d 16-3' d I IF -3' d 1 17.7 d 1 14'$- d 17-9' b 1Z-11• It Note: 1. The above listed allowable heights are measured from the bottom of lop plate to top of bottom plate. 2. Spans may be interpolated. S Rjjjt* D PV►H 0t Ser%foe CIO" r� o � N d m Ot N J ^ i J LL�^E ~ `^ 0 u V) van t Cly i--) m to v < V 'I t 7 CV2 ' N LL r N __j> O Pro C=O 0 p 00 -1 m w c IIIE-=I c ^ U. a ■III V l J Y ^ 110 r= N Co �v '4 J W J od Q (n D C Z > 20 0 Z 0 Z_(✓)WZQw F300 Pco Q=WJ0,' W f nCr 133-ItN WHQOU W J U C N- CPiE}UL 0 UL O < W 0 Cn W W � .T _ O U Z (714 D Q J Q AL �rI HEET- 'J 7'� 09-15-2004 OF 101 Table 2.7.110 Allowable Roof Beam Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes For 3 second wind gust at 110 MPH; using design load of 12 SISF (36 XSF for Max. Cantilever) 2" x 9" x 0.125" x 0.465" Self Mating Beam 4" x 10"x 0.250" x 0.960' Self Mating Beam load I Maximum Span / lbendingWor deflection'd' Load Maximum Span / bendin 'b' or deflection'd' Width (N.) 1 i 2 Span 3 Span 4 Span r•.M' .�-I Width (N.) If 6 2 Span 3 Span • 1 4 Span Ir.M'I.wr Table 2.8-110 Allowable Miscellanious Framing Beams Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes For 3 second wind gust at 110MPH velocity; using design load of 12 #1SF 2' x 9' s 0.125" x 0.485- Sell Mating Beam Tributa load Width 6'-0" T -V 8'-V 9'-V -0' 11'-0 10'' 12'-0" 1T-0'1 14'-0' I 15'-0" I 16'-0" Allowable Span'L' / bendingbdelle ion1' 6 126'-9- b 24'•9' b 23'-2- b 21'•0'b 20'-9' ti19'•9b 18-118-2-dd 651 16'-11' 6 16'4- 131 15'-11' b 11 d 1 26'•3' tl 1 YFRO- b 1 4'-0' d 1 15 1 331" d 41'4- d 1 47a- d 4' . d 'Consult engineer when using this beam. 1. Sns are based on 110 M.P.H. wind bad plus dead load for framing. Notes: 2. Spapans may be interpolated. 1. Spans are based on 110 M.P.H. wind load plus dead load for framing. 2. Span is measured from center of conneclbn to fascia or wall connection. 3. Above spans do not irWrbe length of knee brace. Add horizontal distance Ir m upright to center of brace to beam cenvredfon to Ore above spans for total beam spans. 4. Spans may be interpolated. Table 2.7-120 Allowable Roof Beam Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes ror.) secona wino gust at l cu mrn; using aestgn toss or 14 alar t4.3 alar Tor malt. t.anmever) 2' x 9" x 0.125" x 0.455" Self Mating Beam 4' x 10'x 0.250' x 0.860' Sea Mating Beam Load , Maximum Span l (bendin 'b' or deflection Wl Load Maximum Span l (bending W or defleclion'd' Width (f L) 1 i 2 Span 3 Span 4 Span r Ma x. _. Width (IL) 1 i 2 Span 3 Span . 4 Span centtw,.r 15 I 20'-3- d j 24'-g• b 23--11- b I 4'-0' d 1 15 31'.11' di 39-5" d 40' -3' d 4'-0' d Notes: 1. Spans are based on 120 M.P.H. wind load plus dead load for framing. 2. Spans may be interpolated. Table 2.7.130 Allowable Roof Beam Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes ror a secono wino gust at tau mrn; using aestgn loaa or lb alar tau alar Tor max. %,anulever) T x 9' x 0.125'x 0.495"Sett Mating Beam 4" x /0" x 0.250' x 0.960" Sell Mating Beam Load Maximum Span I (bending 'b' or deflection'd') I Load Maximum Span I bendin b' w deflection -d' Width (N.) 11 8 2 Span 3 Span 1 4 Span ��M'.�.• Width (N.) 1 a 2 Span 3 Span 1 4 Span Can It Iewr 15 1 17 d 1 27-2- 0 I 277 b 1 7-11 d 1 15 1 W-6' d 1 37'- d Notes: 1. Spans are based on 130 M.P.M. wind load plus dead bad for framing. 2. Spans may be interpolated. Table 2.7.140A Allowable Roof Beam Spans for Carports, Patio Coven, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes ror a second wino gust ai ioum mrn• using aC51 n toad OT is iwar I= war Tor max. t.antllevel 2" x 9" x 0.125" x 0.485" Self Mating Beam 4" a 10" a 0.250" x 0.960" $el! Mating Beam Load Maximum Span I (bonding W or detiection'd') Load Maximum Span / bendin W or de0ection'd' Width (ft.)1 It 2 spahl Span 1 4 Span Width (N.) 1 a 2 Sparl Spa3 Span 1 4 Span' C -1111 - Notes: 1. Spans are based on 140A M.P.H. wind bad plus dead bad for framing. 2. Spans may be interpolated. Table 2.8.120 Allowable Miscellanious Framing Beams Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes For 3 second wind gust at 120 MPH velocity; using design load of 14 BISF 4' x 10' s 0.250" x 0.960" Self Notes: 1. Spans are based on 120 M.P.H. wind bad plus dead load for framing. 2. Span is measured from center of Connection to fascia or wall connection. 3. Above spans do not include length of knee brace. Add horizontal distance Irom upright to center of brace to beam connection to the above spans for total beam spans. 4. Spans may be interpolated. Table 2.8.130 Allowable Miscellanious Framing Beams Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes For 3 second wind gust at 130 MPH velocity; using design load of 16 NSF 2" x 9' x 0.125" x 0.455' Self Mating Beam Tributary Load Width 6'-V I r -V 1 8'0' 1 9'-0' I t0'-0' I 11'-V ' 1? -0' 1 IT -V 1 14'-0" 1 15'-0' 1 16'7 1 1r-0' Allowable Span'L' / bendi 'bor deaection'd' 26'•3- d 24'•11' di 23'-10' di 27.11- di 27-2' di 21'-5' di 20'-10' di 20'•7 di 17-T di 17-4' di 111'-11' Notes: 1. Spans are based on 130 M.P.H. wind load plus dead load for framing. 2. Span is measured horn tamer of connection to fasaa or wall connection. 3. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 4. Spans may be interpolated. Table 2.8.140A Allowable Miscellanious Framing Beams Spans for Carports, Patio Covers, Screen Rooms, and other Open Buildings with Solid Roofs Metals USA Proprietary Shapes For 3 second wind gust at 140A MPH velocity; using design load of 19 SISF 2" x 9" x 0.125" x 0.485" Self Mating Beam Tributa load Width 6'-0' 7--0" 8'-0' 9'-0' 10'-0' 11'-0' 12'-V 1 3'-0' 14'-0"1 15'-V 1 16'-V 1 17'.0 - Allowable Span'L' / bending -b- or deflection'd' 26'-9' d 23'•6' d 2?•6' d 21'-0' d 20'•11-d 20'-3- di 19'-11- dl 19••2- di 15'a' dj 111'-3- III 1r -10'd 17'4- d 4" x 10" x 0.250" x 0.960' 'Consult engineer when using this beam. Notes: 1. Spans are based on 140A M.P.H. wind load plus dead load for framing. 2. Span is measured from center of connection to fascia or wall connection. 3. Above spans do not include length of knee brace. Add horizontal distance from upright to center of brace to beam connection to the above spans for total beam spans. 4. Spans may be interpolated. � � N Il Mat N J _jter. i u. N n E ~ {/I ,o) u � v r V2 iJ ro v v troll CV2 = > c" � 0 � 1 000 v L V N r d LLJ a N W C �� l�L VE - ■III 00 J ni 00 ni r- LOd E N ~ :3 Q r�vt Cc �v Go W � W ^ H J ad Q C/) D X Z > M p Z0. ZvnwZ0W OC30pf-c0 Q 2 U J i n CO 'cr � rr W r H Q o 0 W J () O N - j 0 Q LL U � W 0 cn � 2 Zn W _ O Q Z N Q Q / Y EAL SHEET 71H 09-15-2004 OF 10 General Notes and Specifications: 1. The following attachments are designed to be married to block and wood frame structures of adequate structural capacity. The contractor / home owner shall verify that the host structure is in good condition and of sufficient strength to hold the proposed addition. 2. If there is a question about the host structure. the owner (at his own expense) shall hire an architect, engineer, or a certified home inspection company to verify host structure capacity. 3. Roll formed roof panels (pans) are designed for uniform loads and can not be walked on unless plywood is laid across the ribs. Pans have been tested and perform better in wind uplift loads than dead load + live loads. Spans for pans are based on deflection of U80 for high wind zone criteria. 4. Composite panels can be loaded as walk on or uniform loads and have, when tested performed well in either test. The composite panel tables are based on bending properties determined at a deflection limit of U180. 5. The following rules apply to attachments involving mobile and manufactured homes: a. Structures to be placed adjacent to a mobile I manufactured home built prior to 1994 shall use 'fourth wall construction" or shall provide detailed plans of the mobile I manufactured home along with addition plans for site specific review and seal by the engineer. This applies to all screen / glass rooms, and / or other structures to be attached. b. For mobile / manufactured homes built after 1994, structures may be attached provided the project follows the plan for attachment of this manual. The contractor / home owner shall provide verification of the structural system used to build the host structure. 6. The shapes and capacities of pans and composite panels are from "Industry Standard' shapes. except for manufacturers proprietary shapes. Unless the manufacturer of the product is known, use the "Industry Standard' Tables for allowable spans. 7. When converting a screen room to a glass room or a carport to a garage, the roof must be checked and reinforced for the enclosed building requirements. 8. When using TEK screws in lieu of S.M.S. longcr screws must bs used to compensate for drill _ head. 9. For high velocity hurricane zones the minimum live load / applied load shall be 30 PSF. 10. Interior walls 8 ceilings of composite panels may have 1/2' sheet rock added by securing the sheet rock w/ 1' fine thread sheet rock screws at 16" O.C. each way. 11. All fascia gutter end caps shall have water relief ports. 12. Spans may be interpolated between values but not extrapolated outside values. 13. Design Check List and Inspection Guides for Solid Roof Panel Systems are included in ispection guides for sections 2, 3A 8 B. 4 8 5. Use section 2 inspection guide for solid roof in Section 1. 14. All exposed screw heads through roof panels into the roof sub structure shall be caulked w/ silicon sealent. ALTERNATE CONNECTION: (3) #8 SCREWS PER PAN WITH 1' MINIMUM EMBEDMENT INTO FASCIA THROUGH PAN BOXED END EXISTING TRUSS OR RAFTER #10 x 1-1/2' S.M.S. (2) PER RAFTER OR TRUSS TAIL #10 x 3/4' S.M.S. @ 12' O.C. EXISTING FASCIA FOR MASONRY USE 1/4' x 1-1/4' MASONRY ANCHOR OR EQUAL @ 24' O.C. FOR WOOD USE #10 x 1.112' S.M.S. OR WOOD SCREWS @ 2' O.C. -•--• ••-.EXISTING HOST -STRUCTURE: WOOD FRAME, MASONRY OR OTHER CONSTRUCTION ROOF PANEL TO FASCIA DETAIL SCALE: 2" =1'-0" ROOF PANEL TO WALL DETAIL SCALE: Y = 1'-0' SEALANT HEADER (SEE NOTE BELOW) ROOF PANEL #8 x 1/2" S.M.S. (3) PER PAN (BOTTOM) AND (1) @ RISER (TOP) CAULK ALL EXPOSED SCREW HEADS SEALANT HEADER (SEE NOTE BELOW) EXISTING TRUSS OR RAFTER #10 x 1-1/2' S.M.S. OR WOOD WOOD SCREW (2) PER RAFTER OR TRUSS TAIL #10 X 3/4' S.M.S. OR WOOD SCREW SPACED @ IT O.C. #8 x 1/2' S.M.S. SPACED @ 8. O.C. BOTH SIDES CAULK ALL EXPOSED SCREW HEADS ROOF PANEL EXISTING FASCIA ROOF PANEL TO FASCIA DETAIL EXISTING HOST STRUCTURE SCALE: 2' = 1'-0' WOOD FRAME, MASONRY OR #8 x 1/2' S.M.S. SPACED OTHER CONSTRUCTION/� @ 8' O.C. BOTH SIDES CAULK FOR MASONRY USE ALL EXPOSED SCREW HEADS 1/4'x 1-1/4' MASONRY ANCHOR OR EQUAL @ 24' O.C. D'L'IR� FOR WOOD USE #10 x 1-1S.M.S. OR WOOD SCREWS @12' O.C. - ROOF PANEL ROOF PANEL TO WALL DETAIL ROOF PANEL SCALE: 2' = 1'-0' - #8 x 1/2' S.M.S. (3) PER PAN WOOD STRUCTURES SHOULD CONNECT TO TRUSS BUTTS OR THE SUB -FASCIA FRAMING WHERE (BOTTOM) AND (1) @ RISER POSSIBLE ONLY. 15% OF SCREWS CAN BE OUTSIDE THE TRUSS BUTTS. SUB -FASCIA AND THOSE AREAS (TOP) CAULK ALL EXPOSED SHALL HAVE DOUBLE ANCHORS. ALL SCREWS INTO THE HOST STRUCTURE SHALL HAVE MINIMUM 1-1/4' SCREW HEADS WASHERS OR SHALL BE WASHER HEADED SCREWS. ROOF PANELS SHALL BE ATTACHED TO THE HEADER WITH (3) EACH #8 x 1/2' LONG CORROSION RESISTANT SHEET METAL SCREWS WITH 1/2' WASHERS. ALL SCREW HEADS SHALL BE CAULKED OR SHALL HAVE NEOPRENE GASKET BETWEEN THE WASHER AND THE PAN. PAN RIBS SHALL RECEIVE (1) EACH #8 x 112' SCREW EACH. THE PANS MAY BE ANCHORED THROUGH BOXED PAN WITH (3) EACH #8 x V OF THE ABOVE SCREW TYPES AND THE ABOVE SPECIFIED RIZER SCREW. #8 x 9/16' TEK SCREWS ARE ALLOWED AS A SUBSTITUXE-PeR [8 x V2' S.M.S. Section 7 Design Statement: The roof systems designed for section 7 are Main Wind Force Resisting Systems and Components and Cladding. In conformance with the 2004 Florida Building Code such systems must be designed using loads for components 8 cladding. Thus. Section 7 uses several different categories of these loads as described below. All pressures shown in the table below are in PSF (#/SF). EXISTING TRUSS OR RAFTER 1. Free-standing Structures with Mono -sloped Roofs with a minimum live load of 10 PSF except for 140B and.150 MPH loads which are 30 PSF. The design wind loads used are from ASCE 7-98 Section 6.5, Analytical Procedure. The loads assume a mean roof height of less than 317; roof slope of 0' to 10'; I = 0.77 for open structures 6 1.00 for all others. Negative internal pressure coefficient is 0.18 for enclosed and 0.55 for partially enclosed structures. 2. Attached Covers such as carports, patio covers, gabled carports, and screen rooms with a minimum live load of 10 PSF except for 1408 and 150 MPH loads which are 30 PSF. The design wind loads used are from ASCE 7.98 Section 6.5, Analytical Procedure. Roof slope of 0' to 25' (+/-10');1= 1.00. Negative internal pressure coefficient is 0.18 for enclosed and 0.55 for partially enclosed structures. 3. Glass d Modular Rooms design loads use a minimum live load of 20 PSF and wind loads are from ASCE 7.98 Section 6.5. Analytical Procedure and the 2004 Florida Building Code. The loads assume a mean roof height of less than 30'; roof slope of 20' to 30' (+/- 101); 1= 1.00. a. Enclosed structural systems use a negative internal pressure coefficient = +1- 0.18. - b. Partially Enclosed structural systems use a negative internal pressure coefficient = +/- 0.55 4. Overhangs use a minimum live load of 20 PSF except for 140B and 150 MPH loads which are 30 PSF. Wind loads are from ASCE 7-98 Section 6.5, Analytical Procedure for Components 8 Cladding for Enclosed or Partially Enclosed Structural Systems. The loads assume a mean roof height of less than 30% roof slope of 20' to 30' (+/- 10'); 1 = 1.0. Negative internal pressure coefficient is 0.18 for enclosed and 0.55 for partially enclosed structures. 5. Anchors for composite panel roof systems were computed on a load width of 10' and 16' projection with a 2' overhang. Any greater load width shall be site specific. Conversion Table 7A Load Coversion Factors Based on Mean Roof Height of Host Structure For All Components Exonsure "B" to "C" Mean Most Pans composite Structure Height Panels 0.19 0.91 0.94 15.20' 0.86 0.92 20'- 25' 0.65 0.91 25' - 30' 0.05 0.89 Conversion Table 7B Conversion Based on Mean Height of Host Structure for Solid Roof Systems From Exposure'B' to'C' Span Multiplier Mean Most Load Pans Composite Structure Height Multiplier Panels 0.15' 1.21 0.94 0.91 15' - 20' 1.29 0.92 0.88 20' - 25' 1.34 0.91 0.86 70' 1.40 0.89 0.85 (2) #10 x 1-1/2'S.M.S.-OR WOOD SCREW PER RAFTER OR TRUSS TAIL ALTERNATE: #10 x 3/4' S.M.S. OR WOOD SCREW SPACED @ 12' O.C. EXISTING FASCIA 6' x'1' x 6"0.024' MIN. BREAK FORMED FLASHING PAN ROOF PANEL POST AND BEAM (PER TABLES) ALTERNATE MOBILE HOME FLASHING FOR FOURTH WALL CONSTRUCTION PAN ROOF PANELS i SCALFc 2' = V-0- �•. �. INSTALLATION INSTRUCTIOK$;/ \/ A. PLACE (2) BEADS OF CAULKING ON BACK SIDE OF HEADER BEFORE INSTALLING. S. SLIDE 1' TAB AT TOP OF HEADER UNDER DRIP EDGE. DO NOT PUSH DRIP EDGE UP. DRIP EDGE MUST MAINTAIN SAME PLANE AS SLOPE OF ROOF. C. FASTEN HEADER TO FASCIA BOARD WITH #10 x 1' SCREWS @ 6' O.C. STAGGERED TOP AND BOTTOM (SEE DETAIL ABOVE) D. PLACE PAN ROOF PANEL INTO HEADER AND ATTACH TO 4TH WALL POST AND BEAM SYSTEM ONLY. 00 NOT ATTACH TO HEADER. HEADER IS USED AS FLASHING ONLY. HEADER INSIDE DIMENSION SHALL BE EQUAL TO PANEL OR PAN'S DEPTH "t'. THE WALL THICKNESS SHALL BE THE THICKNESS OF THE ALUMINUM PAN OR COMPOSITE PANEL WALL THICKNESS. HEADERS SHALL BE ANCHORED TO THE HOST STRUCTURE WITH ANCHORS APPROPRIATE FOR THE MATERIAL CONNECTED TO. THE ANCHORS DETAILED ABOVE ARE BASED ON A LOAD FROM 120 M.P.H. FOR SBC SECTION 1606 FOR A MAXIMUM POSSIBLE SPAN OF THE ROOF PANEL FROM THE HOST STRUCTURE. ANCHORS BASED ON 120 MPH WIND VELOCITY. FOR HIGHER WIND ZONES USE THE FOLLOWING CONVERSION: 1100-1231 130 1 140 150 #8 1 #10 1 #12 #12 �pWS REVIEWED P of S j%fo? Ct� J ad Q (n D 20 Z Z cow Z O Q 00 Cl p _H H Q= W J C C W � IM Q Z W_ H a 00 WJU0NO XPD(Y}H LL::)(Y0Q W Q(n LL Cl) O _ �o U Z N H � H D Q J Q W ZN ^ • ~ N {l " � J LL �+ 0Q n UZ^ ZO C UJ y^v' � X010^ Q) Cpl a � ro Co W 0XLu It r� m U, Z Uj J Qm0 N LL a U W a W LL C ZNW J O� % MUSt'S�EAL SHEET 09.15-20041 OF 10 EXISTING TRUSS OR RAFTER —� REMOVE RAFTER TAIL TO HERE P REMOVE ROOF TO HERE #8 x 1/2' S.M.S. SPACED @ PAN RIB MIN. (3) PER PAN I FLASH UNDER SHINGLE #10 x 1-1/2' S.M.S. OR WOOD r = - - SCREW (2) PER RAFTER OR Z u TRUSS TAIL a a HOST STRUCTURE —v `— ROOF PAN Z 4L HEADER ao NEW 2 x FASCIA REMOVED RAFTER TAIL ROOF PAN TO FASCIA DETAIL HEADER (SEE NOTE BELOW) SCALE: 2"= 1'-0' #8 x 1/2' S.M.S. @ W O.C. REMOVE RAFTER TAIL TO FOR MASONRY USE c j HERE 114"x 1-1/4'.MASONRY j i o REMOVE ROOF TO HERE "-` "-- -" ANCHOR OR EQUAL - - #8 x 1/2' S.M.S. SPACED @ 24' O.C.FOR WOOD USE @ 8.O.C. BOTH SIDES -EXISTING TRUSS.ORRAFJER_—fl. .- o-- FLASH UNDER SHINGLE , 910 x 1-112 S.M.S. OR WOOD SCREW (2) PER RAFTER OR w.~ ZZ a..:.::::.......... TRUSS TAIL #10 x 1-1/2' S.M.S. OR WOOD HOST STRUCTURE ` COMPOSITE ROOF PAN SCREWS @ 12' O.C. HEADER NEW 2 x _ FASCIA REMOVED RAFTER TAIL COMPOSITE ROOF PANEL TO WALL DETAIL SCALE: 2"= 1'-0' EXISTING TRUSS OR RAFTER (2) #10 x 1-1/2' S.M.S. OR WOOD SCREW PER RAFTER OR TRUSS TAIL ALTERNATE: #10 x 3/4' S.M.S. OR WOOD SCREW SPACED @ 12' O.C. EXISTING FASCIA HOST STRUCTURE TRUSS OR RAFTER 1- FASCIA (MIN.) BREAK FORMED METAL SAME THICKNESS AS PAN (MIN.) ANCHOR TO FASCIA AND RIZER OF PAN AS SHOWN _ 6' x T x 6' 0.024' MIN. BREAK FORMED FLASHING ROOF PANEL h w �cr SCREW #10 x ('t' + 1/2') W/ 1.1/4' FENDER WASHER o—_ POST AND BEAM (PER TABLES) ALTERNATE MOBILE HOME FLASHING FOR FOURTH WALL CONSTRUCTION COMPOSITE ROOF PANELS SCALE: 2'= V -W INSTALLATION INSTRUCTIONS: A. PLACE (2) BEADS OF CAULKING ON BACK SIDE OF HEADER BEFORE INSTALLING. B. SLIDE 1' TAB AT TOP OF HEADER UNDER DRIP EDGE. DO NOT PUSH DRIP EDGE UP. DRIP EDGE MUST MAINTAIN SAME PLANE AS SLOPE OF ROOF. C. FASTEN HEADER TO FASCIA BOARD WITH #10 x 1' SCREWS @ 6' O.C. STAGGERED TOP AND BOTTOM (SEE DETAIL ABOVE) D. PLACE COMPOSITE ROOF PANEL INTO HEADER AND ATTACH TO 4TH WALL POST AND BEAM SYSTEM ONLY. DO NOT ATTACH TO HEADER. HEADER IS USED AS FLASHING ONLY. ALTERNATE ROOF PANEL TO WALL DETAIL SCALE: 2"= 1'.0' HOST STRUCTURE TRUSS OR RAFTER � 1' FASCIA (MIN.) COMPOSITE ROOF PANEL it 08 x 3/4' SCREWS @ 6.O.C. #8 x 1/2' SCREWS @ EACH RIB rrr Z CL ROOF PANEL ----- — LU ----_ Z 4L ao HEADER (SEE NOTE BELOW) HEADER (SEE NOTE BELOW) #8 x 1/2' S.M.S. @ W O.C. FOR MASONRY USE 114"x 1-1/4'.MASONRY _ •EXISTING HOST STRUCTURE: - - -'---" "-` "-- -" ANCHOR OR EQUAL - - 'WOOD FRAME, MASONRY OR @ 24' O.C.FOR WOOD USE OTHER CONSTRUCTION #10 x 1-1/2' S.M.S. OR WOOD ANCHOR OR EQUAL SCREWS @ 12' O.C. _ 6' x T x 6' 0.024' MIN. BREAK FORMED FLASHING ROOF PANEL h w �cr SCREW #10 x ('t' + 1/2') W/ 1.1/4' FENDER WASHER o—_ POST AND BEAM (PER TABLES) ALTERNATE MOBILE HOME FLASHING FOR FOURTH WALL CONSTRUCTION COMPOSITE ROOF PANELS SCALE: 2'= V -W INSTALLATION INSTRUCTIONS: A. PLACE (2) BEADS OF CAULKING ON BACK SIDE OF HEADER BEFORE INSTALLING. B. SLIDE 1' TAB AT TOP OF HEADER UNDER DRIP EDGE. DO NOT PUSH DRIP EDGE UP. DRIP EDGE MUST MAINTAIN SAME PLANE AS SLOPE OF ROOF. C. FASTEN HEADER TO FASCIA BOARD WITH #10 x 1' SCREWS @ 6' O.C. STAGGERED TOP AND BOTTOM (SEE DETAIL ABOVE) D. PLACE COMPOSITE ROOF PANEL INTO HEADER AND ATTACH TO 4TH WALL POST AND BEAM SYSTEM ONLY. DO NOT ATTACH TO HEADER. HEADER IS USED AS FLASHING ONLY. ALTERNATE ROOF PANEL TO WALL DETAIL SCALE: 2"= 1'.0' HOST STRUCTURE TRUSS OR RAFTER � 1' FASCIA (MIN.) COMPOSITE ROOF PANEL ROOF PANELS SHALL BE ATTACHED TO THE HEADER W/ (3) EACH #8 x 1/2' LONG CORROSION RESISTANT ALTERNATE COMPOSITE ROOF PANEL TO WALL DETAIL S.M.S. W/ 1/2' WASHERS. ALL SCREW HEADS SHALL BE CAULKED OR SHALL HAVE NEOPRENE GASKET BETWEEN THE WASHER AND THE PAN. PAN RIBS SHALL RECEIVE (1) EACH #8 x 1/2' SCREW EACH. THE SCALE: 2'm 1'-0' PANS MAY BE ANCHORED THROUGH BOXED PAN W/ (3) EACH #8 x l' OF THE ABOVE SCREW TYPES AND COMPOSITE ROOF PANELS SHALL BE ATTACHED TO EXTRUDED HEADER W/ 3 EACH THE ABOVE SPECIFIED RIB SCREW. #8 x (d+1/2') LONG CORROSION RESISTANT S.M.S. ( ) #8 x 1/2' ALL PURPOSE SCREW @ 12' O.C. BREAKFORM FLASHING 6' 10' *3-OMPpSITE ROOF PANEL p (SEE SPAN TABLE) / STRIP SEALANT BETWEEN FASCIA AND HEADER 1/2' SHEET ROCK FASTEN TO PANEL W/ 1' FINE THREAD SHEET ROCK SCREWS @ 16' O.C. EACH WAY FASTENING SCREW SHOULD BE A MIN. OF 1' BACK FROM THE EDGE OF FLASHING WHEN SEPARATION BETWEEN DRIP EDGE AND PANEL IS LESS THAN 3/4' THE FLASHING SYSTEM SHOWN IS REQUIRED ALTERNATE DETAIL FOR FLASHING ON SHINGLE ROOFS SCALE: 2'= V -W NOTES: 1. FLASHING TO BE INSTALLED A MIN. 6- UNDER THE FIRST ROW OF SHINGLES. 2. STANDARD COIL FOR FLASHING IS 16' .019 MIL. COIL. 3. FIRST ROW OF EXISTING NAILS MUST BE REMOVED TO INSTALL FLASHING PROPERLY. 4. FLASHING WILL BE INSTALLED UNDER THE FELT PAPER WHEN POSSIBLE. 5. HEADER WILL BE PUTTY TAPED AND CAULKED EVEN THOUGH FLASHING IS TO BE INSTALLED. 6. IF THE DROP FROM THE EDGE OF THE SHINGLE DOWN TO THE TOP OF THE HEADER IS MORE THAN 1' THEN THE DRIP EDGE WILL HAVE TO BE BROKEN TO CONFORM TO THIS DROP. 7. WHEN USING FLASHING THE SMALLEST SIZE HEADER AVAILABLE SHOULD BE USED. 12' .03 MIL. ROLLFORM OR 8' BREAKFORM IS BEST SUITED FOR HEADER SINCE IT KEEPS THE FLAP LIP OF THE HEADER BACK FROM THE EDGE OF THE FLASHING. 8. WHEN SEPARATION BETWEEN DRIP EDGE AND PANEL FLASHING IS REQUIRED 1/2' SEPARATION MINIMUM. 9. STRIP SEALANT BETWEEN FASCIA AND HEADER PRIOR TO INSTALLATION. CAULK ALL EXPOSED SCREW HEADS SEALANT UNDER FLASHING 3' COMPOSITE OR PAN ROOF (SPAN PER TABLES) #8 x 1/2' WASHER HEADED CORROSIVE RESISTANT SCREWS @ W O.C. ALUMINUM FLASHING LUMBER BLOCKING TO FIT PLYWOOD / OSB BRIDGE FILLER COMPOSITE ROOF: #8 x't' +1/2' LAG SCREWS W/ 1-1/4'0 FENDER WASHERS @ 8' O.C. THRU PANEL INTO 2 x 2 2' X 2' x 0.044' HOLLOW EXT 5/16'0 x 4' LONG (MIN.) LAG SCREW FOR 1-1/2' 1,j Ij EMBEDMENT (MIN.) INTO RAFTER OR TRUSS TAIL v i C%2 CJ J h— W I J 06 Q (n Z) O 20 0 _�.o Z(nWZOQ 0 0 0 _H H Q=W=J00 W (n � =) oz W_F-QO WJUONO x p 0 E} H LLOOQU W 0 (1) LL U) W 2v - O _ �O 0 Z N H � Q J Q I- W aN c ~ N LL h J LL NOa^ i- O A C Z. o� m W 0=`` >oso m W wv°ai ,Z= J O O ao iC O LL fo iQ U WvwLL C ZNW �O co co —I 11111 1 CONVENTIONAL RAFTER OR/ SHEET TRUSS TAIL 8B WEDGE ROOF CONNECTION DETAIL SCALE: 2' = V-0' 09-15-2004 OF 10 Z CL g HEADER (SEE NOTE BELOW) -08x (d+1/2) S.M.S.-@8' O.C. FOR MASONRY USE 1/4' x 1-1/4' MASONRY EXISTING HOST STRUCTURE: ANCHOR OR EQUAL WOOD FRAME, MASONRY OR @ 24' O.C.FOR WOOD USE OTHER CONSTRUCTION #10 x 1-1/2' S.M.S. OR WOOD SCREWS @ 12' O.C. ROOF PANELS SHALL BE ATTACHED TO THE HEADER W/ (3) EACH #8 x 1/2' LONG CORROSION RESISTANT ALTERNATE COMPOSITE ROOF PANEL TO WALL DETAIL S.M.S. W/ 1/2' WASHERS. ALL SCREW HEADS SHALL BE CAULKED OR SHALL HAVE NEOPRENE GASKET BETWEEN THE WASHER AND THE PAN. PAN RIBS SHALL RECEIVE (1) EACH #8 x 1/2' SCREW EACH. THE SCALE: 2'm 1'-0' PANS MAY BE ANCHORED THROUGH BOXED PAN W/ (3) EACH #8 x l' OF THE ABOVE SCREW TYPES AND COMPOSITE ROOF PANELS SHALL BE ATTACHED TO EXTRUDED HEADER W/ 3 EACH THE ABOVE SPECIFIED RIB SCREW. #8 x (d+1/2') LONG CORROSION RESISTANT S.M.S. ( ) #8 x 1/2' ALL PURPOSE SCREW @ 12' O.C. BREAKFORM FLASHING 6' 10' *3-OMPpSITE ROOF PANEL p (SEE SPAN TABLE) / STRIP SEALANT BETWEEN FASCIA AND HEADER 1/2' SHEET ROCK FASTEN TO PANEL W/ 1' FINE THREAD SHEET ROCK SCREWS @ 16' O.C. EACH WAY FASTENING SCREW SHOULD BE A MIN. OF 1' BACK FROM THE EDGE OF FLASHING WHEN SEPARATION BETWEEN DRIP EDGE AND PANEL IS LESS THAN 3/4' THE FLASHING SYSTEM SHOWN IS REQUIRED ALTERNATE DETAIL FOR FLASHING ON SHINGLE ROOFS SCALE: 2'= V -W NOTES: 1. FLASHING TO BE INSTALLED A MIN. 6- UNDER THE FIRST ROW OF SHINGLES. 2. STANDARD COIL FOR FLASHING IS 16' .019 MIL. COIL. 3. FIRST ROW OF EXISTING NAILS MUST BE REMOVED TO INSTALL FLASHING PROPERLY. 4. FLASHING WILL BE INSTALLED UNDER THE FELT PAPER WHEN POSSIBLE. 5. HEADER WILL BE PUTTY TAPED AND CAULKED EVEN THOUGH FLASHING IS TO BE INSTALLED. 6. IF THE DROP FROM THE EDGE OF THE SHINGLE DOWN TO THE TOP OF THE HEADER IS MORE THAN 1' THEN THE DRIP EDGE WILL HAVE TO BE BROKEN TO CONFORM TO THIS DROP. 7. WHEN USING FLASHING THE SMALLEST SIZE HEADER AVAILABLE SHOULD BE USED. 12' .03 MIL. ROLLFORM OR 8' BREAKFORM IS BEST SUITED FOR HEADER SINCE IT KEEPS THE FLAP LIP OF THE HEADER BACK FROM THE EDGE OF THE FLASHING. 8. WHEN SEPARATION BETWEEN DRIP EDGE AND PANEL FLASHING IS REQUIRED 1/2' SEPARATION MINIMUM. 9. STRIP SEALANT BETWEEN FASCIA AND HEADER PRIOR TO INSTALLATION. CAULK ALL EXPOSED SCREW HEADS SEALANT UNDER FLASHING 3' COMPOSITE OR PAN ROOF (SPAN PER TABLES) #8 x 1/2' WASHER HEADED CORROSIVE RESISTANT SCREWS @ W O.C. ALUMINUM FLASHING LUMBER BLOCKING TO FIT PLYWOOD / OSB BRIDGE FILLER COMPOSITE ROOF: #8 x't' +1/2' LAG SCREWS W/ 1-1/4'0 FENDER WASHERS @ 8' O.C. THRU PANEL INTO 2 x 2 2' X 2' x 0.044' HOLLOW EXT 5/16'0 x 4' LONG (MIN.) LAG SCREW FOR 1-1/2' 1,j Ij EMBEDMENT (MIN.) INTO RAFTER OR TRUSS TAIL v i C%2 CJ J h— W I J 06 Q (n Z) O 20 0 _�.o Z(nWZOQ 0 0 0 _H H Q=W=J00 W (n � =) oz W_F-QO WJUONO x p 0 E} H LLOOQU W 0 (1) LL U) W 2v - O _ �O 0 Z N H � Q J Q I- W aN c ~ N LL h J LL NOa^ i- O A C Z. o� m W 0=`` >oso m W wv°ai ,Z= J O O ao iC O LL fo iQ U WvwLL C ZNW �O co co —I 11111 1 CONVENTIONAL RAFTER OR/ SHEET TRUSS TAIL 8B WEDGE ROOF CONNECTION DETAIL SCALE: 2' = V-0' 09-15-2004 OF 10 COMPOSITE PANEL 1' x 2' OR 1' x 3" FASTENED TO PANEL W/ (2) 1/4"x 3' LAG FOR 140 8 1 (2) 3/8" x 3' L N BEAM (SEE TABLES) REMOVE EXISTING SHINGLES UNDER NEW ROOF . POST SIZE PER TABLES SCREEN OR SOLID WALL ROOM VALLEY CONNECTION FRONT WALL ELEVATION VIEW SCALE: 114"= 1'-0' I I I II II I EXISTING TRUSSES OR I I A II II I I N RAFTERS > I A B II IIB I I / HOST STRUCTURE I I _ 1 II M z II II 0.024' FLASHING UNDER AGAINST EXISTING ROOF EXISTING AND NEW SHINGLES �w II u o (1) # 8 x'3/4' PER PAN RIB 2 x 4 RIDGE RAKE RUNNER a ONLY TRIM TO FIT ROOF MIN. 1- @ INSIDE FACE II 'll SCREWS THROUGH DECK 'III II FASCIA OF HOST STRUCTURE 2' x _ RIDGE OR ROOF BEAM (SEE TABLES) SCREEN OR GLASS ROOM WALL (SEE TABLES) 17 MAX. (WITHOUT ADDITIONAL ROOF BEAM AND SUPPORTS MAX. ROOF BEAM SPACING IS 6' O.C.) SCREEN OR SOLID WALL ROOM VALLEY CONNECTION PLAN VIEW SCALE: 118"= l'-0' 30# FELT UNDERLAYMENT W/ PLACE SUPER OR EXTRUDED 220# SHINGLES OVER GUTTER BEHIND DRIP EDGE COMPOSITE PANELS CUT PANEL TO FIT FLAT 0.024' FLASHING UNDER AGAINST EXISTING ROOF EXISTING AND NEW SHINGLES FASTENERS PER TABLE 3B-8 SCALE: 2"= 1'-0' MIN. 1-112' PENETRATION - - (1) # 8 x'3/4' PER PAN RIB 2 x 4 RIDGE RAKE RUNNER CAULK EXPOSED SCREW ONLY TRIM TO FIT ROOF MIN. 1- @ INSIDE FACE FASTEN W/ (2) #8 x 3' DECK EXISTING RAFTER OR SCREWS THROUGH DECK TRUSS ROOF INTO EXISTING TRUSSES OR HEADS RAFTERS A - A - SECTION VIEW SCALE: 1/2'= 1'-0" RIDGE BEAM 2' x 6' FOLLOWS ROOF SLOPE B - B - ELEVATION VIEW SCALE: 1/2'= V -W ATTACH TO ROOF W/ RECEIVING CHANNEL AND (8) #10 x 1" DECK SCREWS AND (8) #10 x 3/4" S.M.S. RIDGE BEAM 2'x 6' EXISTING 1/2' OR 7/16" SHEATHING RISER PANEL ALL LUMBER #2 GRADE OR BETTER (OPTIONAL) DOUBLE PLATE FOR NON -SPLICED PLATE WALLS 16'-0' OR LESS WHEN FASTENING PANELS OR PANS TO WOOD PLATES SCREWS SHALL HAVE A MINIMUM EMBEDMENT OF 1" ALL LUMBER #2 GRADE OR BETTER (OPTIONAL) DOUBLE PLATE FOR NON -SPLICED PLATE WALLS 18'-0' OR LESS I B - B - PLAN VIEW SCALE: 1/2" = 1'-0' PAN TO WOOD FRAME DETAIL SCALE: 2'= 1'4' POST SIZE PER TABLES INSTALL W/ EXTRUDED OR BREAK FORMED 0.050' ALUMINUM U -CLIP W/ (4)1/4" x 1.1/2' LAG SCREWS AND (2) 1/4' x 4' THROUGH BOLTS (TYPICAL) TRUSSES OR RAFTERS _ ^ (2) 1/4' x 4' LAG SCREWS AND WASHERS EACH SIDE POST SIZE PER TABLES INSTALL W/ EXTRUDED OR BREAK FORMED 0.050" ALUMINUM U -CLIP W/ (4) 1/4- x 1-i/2" LAG SCREWS AND (2) 1/4' x 4' THROUGH BOLTS (TYPICAL) (3) #8 WASHER HEADED SCREWS W/1"EMBEDMENT CAULK ALL EXPOSED SCREW HEADS AND WASHERS UNTREATED OR PRESSURE TREATED W/ VAPOR BARRIER /__ - COMPOSITE PANEL UNTREATED OR PRESSURE TREATED W/ VAPOR BARRIER COMPOSITE PANEL TO WOOD FRAME DETAIL SCALE: 2" = 1'-0' PLACE SUPER OR EXTRUDED GUTTER BEHIND DRIP EDGE EXISTING TRUSS OR RAFTER #10 x 2' S.M.S. @ 12' O.C. EXTRUDED OR EXISTING FASCIA SUPER.GUTTER-. - SEALANT 1/2"0 SCH. 40 PVC FERRULE 3" PAN ROOF PANEL (MIN. SLOPE 1/4': 1') (3) #8 x 3/4' S.M.S. PER PAN W/ 3/4' ALUMINUM PAN WASHER CAULK EXPOSED SCREW HEADS SEALANT 1/4' x 8' LAG SCREW (1) PER TRUSS / RAFTER TAIL AND -1/4'x 5' LAG SCREW MIDWAY' BETWEEN RAFTER TAILS SUPER OR EXTRUDED GUTTER EXISTING ROOF TO PAN ROOF PANEL DETAIL 1 SCALE: 2"= 1'-0" EXISTING FASCIA EXISTING TRUSS OR RAFTER 1/4' x 8' LAG SCREW (1) PER TRUSS I RAFTER TAIL AND 1/4" x 5' LAG SCREW MIDWAY BETWEEN RAFTER TAILS SUPER OR EXTRUDED GUTTER EXISTING ROOF TO PAN ROOF PANEL DETAIL 2 SCALE: 2'= l'-0' BREAK FORMED OR PLACE SUPER OR EXTRUDED EXTRUDED HEADER GUTTER BEHIND DRIP EDGE PLACE SUPER GUTTER SEALANT BEHIND DRIP EDGE #10 x 2" S.M.S. @ 12" O.C. EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 1 1/2'0 SCH. 40 PVC FERRULE SCALE: 2"= 1'-0' SEALANT - - (1) # 8 x'3/4' PER PAN RIB _ _ _ _ _ SLOP CAULK EXPOSED SCREW ONLY HEADS 3" PAN ROOF PANEL EXTRUDED OR (MIN. SLOPE 114': 1') SUPER GUTTER WAY BETWEEN EACH SIDE W/ HEADS 3" HEADER EXTRUSION #10 x 2" S.M.S. @ 24" O.C. FASTEN TO PANEL W/(3) #8 x 1/2' S.M.S. EACH PANEL SUPER OR EXTRUDED GUTTER EXISTING ROOF TO PAN ROOF PANEL DETAIL 2 SCALE: 2'= l'-0' BREAK FORMED OR EXTRUDED OR EXTRUDED HEADER PLACE SUPER GUTTER SEALANT BEHIND DRIP EDGE #10 x 4' S.M.S. W/ 1.1/2'0 EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 1 SCALE: 2"= 1'-0' FENDER WASHER @ 17 O.C. OPTION 1: CAULK SCREW HEADS 8 EXISTING TRUSS OR RAFTER COMPOSITE SEAM AND 112 WASHERS SEALANT WAY BETWEEN EACH SIDE W/ HEADS CAULK EXPOSED SCREW #10 x 2" S.M.S. @ 24" O.C. PLACE SUPER OR EXTRUDED HEADS GUTTER BEHIND DRIP EDGE - - - - - 3' COMPOSITE ROOF PANEL 1/4' x 8" LAG SCREW (1) PER - - - - - (MIN. SLOPE 1/4': 1') TRUSS / RAFTER TAIL TRUSS / RAFTER TAIL IN 1/2'0 SCH. 40 PVC FERRULE 1/2' 0 SCH. 40 PVC FERRULE EXISTING FASCIA EXTRUDED OR SUPER GUTTER EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 1 SCALE: 2"= 1'-0' OPTION 1: 2' x_ x 0.050' STRAP @ EACH COMPOSITE SEAM AND 112 CAULK EXPOSED SCREW WAY BETWEEN EACH SIDE W/ HEADS (3) #10 x 2' INTO FASCIA AND PLACE SUPER OR EXTRUDED (3) #10 x 3/4' INTO GUTTER GUTTER BEHIND DRIP EDGE OPTION 2: 1/4- x 8" LAG SCREW (1) PER TRUSS / RAFTER TAIL IN 1/2'0 SCH. 40 PVC FERRULE SEALANT w -M1 #10 x 2" S.M.S. @ 24- O.C. 3' COMPOSITE ROOF PANEL i(MIN. -4GER SLOPE I/4': 1')EXT 3' HEADER EXTRUSION EXISTING TRUSS OR RAFTER FASTEN TO PANEL W/ EXISTING FASCIA SUP #g x 1/2' S.M.S. EACH SIDE @ 12' O.C. AND FASTEN TO SEALANT GUTTER W/ LAG BOLT AS ^ O � ry , ry J LL^^ E F- OO C= N -M 0) v c LLLL C=O �owv W Q. -x b ' w c III�I O c ^ LL 4 •III 'r-^ fo J N 'O .` ^ o .0 r E ew Q M Go J � W ^F J Q D M O O 0Z O 30 Z(n W Z 0 Q OaC3 Q=LLu-Lu0 W N ? mO n W -1 0 N Lu � wp0Fx}•F- LL o6O� J0�W O (n LL 1n w �'t O _ O Q Z N H Q J Q W 2 N a J M hJ Z LL Qz- I_Ov�o a) m W S .. o> ai °D W 7# WN0z= m N LL ma U WawLL C 2ND O to. >a J :f VEAL SHEET SHOWN uN EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 2 SCALE: 2' = l' -W 09-15-2004 OF 10 GUTTER BRACE @ 7-W O/C CAULK SLOPE Imo— (2) #10 x 1/2' S.M.S. @ 16'01C FROM GUTTER TO BEAM SUPER OR EXTRUDED GUTTER SOFFIT 1 1 2'0 HOLE EACH END FOR WATER RELIEF SUPER OR EXTRUDED GUTTER TO 2" x 9" BEAM DETAIL SCALE: 2"= V -V FASCIA COVERS PAN 8 SEAM OF PAN 8 ROOF 3/8' x 3-1/2' LOWER VENTS OR 3/4'0 WATER RELIEF HOLES REOUIRED FOR 2-1/2' 8 3' RISER PANS GUTTERS FOR 2.1/2' AND LARGER PANS SHALL HAVE A 3/4.0 HOLE OR A 3/8"x 4' LOUVER @ 12' FROM EACH END AND 48' O.C. BELOW THE PAN RISE BREAK TO PREVENT WATER BUILD-UP ON THE ROOF. THIS WATER RELIEF SYSTEM IS RECOMMENDED FOR PANS SMALLER THAN 2-1/2" ALSO PAN FASCIA & GUTTER END CAP WATER RELIEF DETAIL SCALE: 2" = V-0" FLASHING 0.024" OR 26 GA. GALV. 2' x 2' x 0.06' x BEAM DEPTH + 4' ATTACH ANGLE'A' TO FASCIA W/ 2-3/8" LAG SCREWS @ EACH ANGLE MIN. 2'x 3' x 0.050- S.M.B. (4) #10 S.M.S. @ EACH ANGLE EACH SIDE A = WIDTH REO. FOR GUTTER 8 = OVERHANG DIMENSION rBEAM TO WALL CONNECTION: (2) 2' x 2' x 0.060" EXTERNALLY MOUNTED ANGLES ATTACHED TO WOOD WALL W/ MIN. (2) 3/8'x 2" LAG SCREWS PER SIDE OR (2) 114' x 2-1/4' CONCRETE ANCHORS TO CONCRETE OR MASONRY WALL ADD (1) ANCHOR PER SIDE FOR EACH INCH OF BEAM DEPTH LARGER THAN 3 - (ALTERNATE) (1) 1-3/4" x 1-3/4" x 1-3/4' x 1/8' INTERNAL U -CLIP ATTACHED TO WOOD WALL W/ MIN. (3) 3/8' x 2' LAG SCREWS PER SIDE OR (3) 1/4' x 2-1/4' CONCRETE ANCHORS TO CONCRETE OR MASONRY WALL ADD (1) ANCHOR PER SIDE FOR EACH INCH OF BEAM DEPTH LARGER THAN 3 - CANTILEVERED BEAM CONNECTION TO FASCIA DETAIL SCALE: 2' = V-0' RECEIVING CHANNEL OVER BEAM ANGLE PROVIDE 0.060" SPACER @ RECEIVING CHANNEL ANCHOR POINTS (2) 010 x 2-1/2' S.M.S. @ RAFTER TAILS OR @ 2. O.C. MAX. W/ 2' x 6' SUB FASCIA 2' x 6' S.M.B. W/ (4) #10 S.M.S. @ EACH ANGLE EACH SIDE NOTCH ANGLE OPTIONAL MUST REMAIN FOR ANGLE STRENGTH CANTILEVERED BEAM CONNECTION AT FASCIA (END VIEW) SCALE: 2'= V-0' PAN ROOF ANCHORING DETAILS RIDGE CAP SEALANT PAN HEADER (BREAK - FORMED OR EXT.) #8 x 9/1 TEK SCREWS @ HEADERS AND PANELS ON PANN RIBS EACH SIDE BOTH SIDES OF BEAM FOR CAULK Al. EXPOSED SCREW _ GABLED APPLICATION HEADS 8 WASHERS 98 x 1/2' S.M.S. (3) PER PAN AND (1) AT PAN RISER — — — ALTERNATE CONNECTION: #8 x 1-1/4' SCREWS (3) PER PAN INTO BEAM THROUGH BOXED END OF PAN AND HEADER ROOF PANEL TO BEAM DETAIL SCALE: 2' = V-0' WHEN FASTENING PANELS OR PANS TO WOOD PLATES SCREWS SHALL HAVE A MINIMUM EMBEDMENT OF 1' CAULK ALL EXPOSED SCREW -- - HEADS 8 WASHERS - - - FOR COMPOSITE ROOFS: #10 x (t + 1/2') S.M.S. W/ 1-1/4"0 FENDER WASHERS @ 12' O.C. (LENGTH = PANEL THICKNESS + 1') @ ROOF BEARING ELEMENT (SHOWN) AND 24' O.C. @ NON-BEARING ELEMENT (SIDE WALLS) PAN OR COMPOSITE ROOF PANEL #8 x 112' S.M.S. (3) PER PAN ALONG PAN BOTTOM FOR PAN ROOFS: (3) EACH #8 x 1/2" LONG S.M.S. PER 12' PANEL W/ 3/4' ALUMINUM PAN WASHER ROOF PANEL (PER TABLES SECTION 7) SUPPORTING BEAM (PER TABLES) ROOF PANEL TO BEAM FASTENING DETAIL SCALE: Y = V-0' 0.024" x 12' ALUMINUM BRK MTL RIDGE CAP VARIABLE HEIGHT RIDGE BEAM EXTRUSION ROOF PANEL 1/8' x 3' x 3' POST OR SIMILAR a #10 x 4' S.M.S. W/ 1/4 x 1-1/2" S.S. NEOPRENE WASHER @ 8" O.C. SEALANT #8 x 9/16" TEK SCREW @ 8' O.C. CAULK ALL EXPOSED SCREW HEADS AND WASHERS �— (3) 1/4'0 THRU-BOLTS (TYP.) #8 x 9/16' TEK SCREW @ 6" O.C. BOTH SIDES PANEL ROOF TO RIDGE BEAM 0_ POST DETAIL SCALE: 2'= V.0' 0.024" X 12' ALUMINUM BRK v #10 x 4" S.M.S. W/ 1/4 x 1-1/2" MTL RIDGE CAP VARIABLE HEIGHT RIDGE BEAM EXTRUSION ROOF PANEL 2" x _ SELF MATING BEAM #5 REBAR IMBEDDED IN TOP OF CONCRETE COLUMN (BY OTHERS) NEOPRENE WASHER @ 8 O.C. SEALANT - #8 x 9/16' TEK SCREW @ 8" , � N Il M Q1 , N v J LL^nE m °v C= kn = 4-) roxxv vroi cJ= LL m �O 0oaov F• L VN.4E W d -x ev m tO w E III�I r ^ LL E III •r b ' � •r cc JY r Llom r E N f rl J co w ^ F � J .Q Cn D 0 U (9�U- ZcnWZQQ p�0-F-H Q = W - mLu 0 (n}jo UJI F - w f)0ND Ix1=..DFr)-I- o8=H_Jgw 0 (n LL cn Lu 2't O _ O U Z fV H Q J Q W QN ^ ~ N N J LL Q) O¢^ �0 in m CO O=M^ Lu ij v �o > wm at w O " W J atno (j) LL'a U wpwLL C Z N w i m 3 W U O.C. kOA CAULK ALL EXPOSED SCREW, HEADS AND WASHERSi/, 1/8" WELDED PLATE SADDL W/ (2) 1/4' THRU-BOLTS HEET / PANEL ROOF TO RIDGE BEAM (� CONCRETE POST DETAIL SCALE: 2'= 1•-0' e 09-15-2004 OF / 10 #8 x 1/2' CORROSION 0.024' ALUMINUM COVER PAN RESISTIVE WASHER HEADED OR CONTINUOUS ALUMINUM SCREWS a 24' O.C. SHEET ALTERNATE #8 x ill' S.M.S. W/ 1/7 0 WASHER. x w TYPICAL INSULATED PANEL SCALE: 2"= 1'-0' COVERED AREA TAB AREA W/ V ROOFING NAILS INSTALLED PER MANUFACTURERS SPECIFICATION FOR NUMBER AND LOCATION NOTES: 1. INSTALL RIGID FOAM INSULATION INTO ALUMINUM ROOF PAN. 2. COVER INSULATION WITH 0.024' PROTECTOR PANEL WITH OVERLAPPING SEAMS. 3. INSULATION PANEL SHALL BE CLOSED WITH ALUMINUM END CAP TO SECURE PLACEMENT AND TO DISCOURAGE THE NESTING OF WILDLIFE AND OR INSECTS. '4. PROTECTOR PANEL WILL BE SECURED BY #8 x 5/8' CORROSION RESISTIVE WASHER -HEADED SCREWS. — • ... ___ . .. _ 5. SCREW PATTERN WILL BE 12' ON ALL PERIMETERS AND 24' O.C. FIELD ON EACH PANEL. 6. ALUMINUM END CAP WILL BE ATTACHED WITH (3) #8 x 1/7 CORROSION RESISTIVE 0 0 0 0 0 0 o SUBSEQUENT ROWS O 318' TO 1/2' ADHESIVE BEAD FOR A 1' WIDE ADHESIVE STRIP UNDER SHINGLE STARTER ROW COMPOSITE PANEL W/ EXTRUDED OR BREAK FORMED CAP SEALED IN PLACE W/ ADHESIVE OR SCREWS \ 7/16' O.S.B. PANELS PROFAB COMPOSITE ROOF PANEL WITH O.S.B. AND STANDARD -SHINGLE FINISH DETAIL --- SCALE: N.T.S. SPECIFICATIONS FOR APPLYING O.S.B. AND SHINGLES FOR ROOF SLOPES OF 3:12 AND GREATER WASHER HEADED SCREWS. 1. INSTALL PRO -FAB PANELS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. NOTE: FOR PANEL SPANS W/ 0.024' ALUMINUM PROTECTIVE COVER MULTIPLY 2. SEAL ALL SEAMS WITH PRO 2000 CHEMREX 948 URETHANE AND CLEAN THE ROOF OF ANY SPANS IN SECTION 5 OR 7 BY 1.28 FOR H-28 METAL 6 1.20 FOR H-14 OR H-25 METAL. DIRT GREASE WATER OR OIL COVERED AREA TAB AREA 318' TO 112' ADHESIVE BEAD FOR A 1' WIDE ADHESIVE STRIP UNDER SHINGLE SUBSEQUENT ROWS STARTER ROW COMPOSITE PANEL W/ EXTRUDED OR BREAK FORMED CAP SEALED IN PLACE W/ ADHESIVE OR SCREWS SEALANT BEADS PROFAB COMPOSITE ROOF PANEL WITH SHINGLE FINISH DETAIL SCALE: N.T.S. ATTACH SHINGLES TO COMPOSITE ROOF PANELS WITH INDUSTRIAL ADHESIVE'. APPLY ADHESIVE IN A CONTINUOUS BEAD 318' TO 112' DIAMETER SO THAT THERE IS A 1' WIDE STRIP OF ADHESIVE WHEN THE SHINGLE IS PUT IN PLACE. FOR AREAS UP TO 120 M.P.H. WIND ZONE: 1) STARTER ROWS OF SHINGLES SHALL HAVE ONE STRIP OF ADHESIVE UNDER THE SHINGLE AT MID COVERED AREA AND ONE UNDER THE SHINGLE AT MID TAB AREA. STARTER SHINGLE ROW INSTALLED WITH THE TABS FACING IN THE UPWARD DIRECTION OF THE ROOF SLOPE. 2) SUBSEQUENT ROWS OF SHINGLES INSTALLED WITH THE TABS FACING IN THE DOWNWARD DIRECTION OF THE ROOF SLOPE WITH ONE STRIP OF ADHESIVE UNDER THE SHINGLE AT MID COVERED AREA. FOR AREAS ABOVE 120 M.P.H. WIND ZONE: 1) STARTER ROWS OF SHINGLES SHALL HAVE TWO STRIPS OF ADHESIVE UNDER THE SHINGLE AT MID COVERED AREA AND TWO STRIPS AT MID TAB AREA. SHINGLE ROW INSTALLED WITH THE TABS FACING IN THE UPWARD DIRECTION OF THE ROOF SLOPE. 2) SUBSEQUENT ROWS OF SHINGLES INSTALLED PER PREVIOUS SPECIFICATION WITH TWO STRIPS OF ADHESIVE AT MID COVERED AREA. ' ADHESIVE: CHEM REX - PL PREMIUM 948 URETHANE ADHESIVE OR OSI - RF140 MINIMUM ROOF SLOPE: 7 IN 17 3. APPLY 16 MILS OF MORTON 652 GLUE TO THE PANELS AND INSTALL 7/16' O.S.B. OVER THE GLUE AND PANELS. 4. INSTALL 15# FELT PAPER IN ACCORDANCE WITH THE FLORIDA BUILDING CODE, 2001 EDITION, SECTION 1507.38. 5. INSTALL SHINGLES IN ACCORDANCE WITH THE FLORIDA BUILDING CODE, 2001 EDITION, SECTION 1507.3. UNIFORM LOAD SINGLE SPAN CANTILEVER UNIFORM LOAD NOTES: UNIFORM LOAD 1 OR SINGLE SPAN UNIFORM LOAD 1 l 1 A B C D 3 SPAN UNIFORM LOAD l 1 l l 1 A B C D E 4 SPAN 1. 1 = Span Length a = Overhang Length 2. All spans listed in the tables are for equally spaced distances between supports or anchor points. 3. Panels shall not be spliced except at supports. SPAN EXAMPLES FOR SECTION 7 TABLES SCALE: N.T.S. � J Q m Z � W 0 z0 Z_cnLyz5 000 P: Q= W J 0 0 in W in jm' WrF__F_ 00 W J U O C'4 R P 0 } H LI_0QU W 0 U) L W 2,4 U Z N H � H � Q J Q N; 09.15-2004 1 OF / 101 W (Y 12' 12" x VARIOUS HEIGHT RISER ROOF PANEL SCALE: 2 = 1'-0' Table 7.3.1 Allowable Spans for Riser Panels for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 H-28 3' x 12' x 0.024' 2 or 5 Rib Riser Panels •3' x 12' x 0.030' 2 or 5 Rib Riser Panels Open IN res Wind Mono -Sloped Roof Region tit 3 4 span span span Screen Rooms i Attached Covers 1i2 3 4 span span span Glass i Modular Rooms Overhang I Enclosed Cantilever 4 All span span Roofs 1i2K14--W 0 P 19.5" 19.10' 14'-10' 18'-10' 19.7 176' 17.10' 15-10' 15'-9' 4'-0" ' 19.5' 19-10' 13'-9' 1T-10' 18'•2' 114•3' 11'•7- 14'-10' 4'-0' 12 MPH l4'-5' 18'•10• 19'•7 13'-T 16'•3' 16'•7' 10-6' 1T-10' 17-11' 13'-11' 4'-0' 123 NPM 14'-2' 18'4' 18'-8' 12'•11' 15'-11' 16'4' 10'.6' 11-6' 13'-8' 17.9' 130 MPH 13'-9" 1741 17'-9" 12'•6' 15'•5' 15'-9' 10-.2' 15'-10' 17-2' 3'-10' 140 MPH 10'•11' 13'-6' 13'-9" 10-.11" 13'6' IT -T 9-8' 11'•3' 17.7- 14'-2' 150 MPH 10'•11' 13'6' 13'•9' 10-.11' 13'-6' 13'-9' 9-2- 11'_4 11'•7' 3'6' now. i oral raor pane wenn = room wain + wan wlam + overhang. 0 N N 12' MATERIAL: 0.036' OR 0.050' 3105 H-28 ALUMINUM ALLOY 12.00" x 2.50" SUPER PAN® ROOF PANELS (PATENT # 4,918,898) SCALE: 2"= V-17 Table 7.3.2 Allowable Spans for SUPER PAN® Panels for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 H-28 2-1r2w x 12' x 0.028' Super Pan Open Structures Screen Roams Glass i Modular Rooms Overhang I Wind MonoSloped Roof i Attached Coven Enclosed Cantilever Region 1i2 3 1 162 3 4 182 3 4 All span span sPan span span span span sPan span Roofs 2.112' x 12' x a.a3a' Suoer Pan Open Structures Wind ManoSloped Roof Region 1i2 1 3 4 - span span span mom: Screen Rooms i Attached Coven 182 3 4 span span span Glass 8 Modular Rooms Overhang I Enclosed Cantilever lit 3 4 All span span span Rools 0 P 19'•11' 20'-5' 16-' 19'4' 19'-9' 17.10' 15-10' i6'•7 C -O" 11 PH 16.8" 9'•11' 20'•5' 14'•2- 18'4' 18'•8' 11'•7- 14'41' 15'-3" 4'-0" 4'.W 194' 19-9' 13'•7' 17'6' 1T-10' 17-11' 14'-0- 14'4- 4'-W 123 MPH 14'-7- 18'40' 19.3' 13'4' 16'6' 11-6' 10'•10' 17.9' 14'•1' 4'-0' 130 MPH 14'-2' 17'-10' 18'-' 12'•10' 15'-10' 16'-T W4 13'4' 131.7 3'-11' 140 MPH 11%3' 13'-10' 14'•7 11'•3' 13'•10' 14'-2' 9'-11' -72'-6' 17-11' 3'-9" 150 MPH 1114' 13'•10' 14'-T 11'•' 13%10' 1 14'-2' 1 9'6' 11'-8' 1 174' 1 -T Y-7- mom: r ore mor pane wain = room wpm + was warn + ovemang. 12.00• I I 0 (4) #10 x 9/16' S. M. S. W/ 3/4' WASHER EACH PAN EACH 3.00' rt— OFCONNECTION 3.00' MATERIAL: 0.028 OR 0.034"3105 H-28 ALUMINUM ALLOY 12.00" x 2.50" W PANEL SCALE: 2'= 1'-0' Table 7.3.3 Allowable Spans for SUPER PAN® Panels for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 H-28 24/r x 12' a 0.036' Super Pan Open Structures Screen Rooms Glass i Modular Rooms Overhang i Wind MonoSlo d Roo! i Attached Covers Enclosed Cantilever Region 1 1i2 1 7 4 tit 1 3 1 / 182 3 4 All span span span span span span span span I pan Roofs 2-112' s 12' x 0.050' Super Pan Open Structuros Wind Man lo Roof Region tit 3 4 span span span Serean Rooms i Attached Coven tit 3 4 span span span Glass i Modular Rooms Overhang I Enclosed Cardllever 1u 3 4 All span span span Rook 100 MPN 23'-11' 2476" 18'•10" 27-3' 23'6' 15'-5' 19.9' 20'-1' 4'.W 9-Y 23•11' 24'4• 1T-9' 21'-11' 27.5' 14'-6' 18'•g' 19.1 4'.W • 23'-3' 23'•8" 16'-3' 20'-11' 21'4' 13'•7' 1T-8' 18'-0' 4'-0' 123MPH 18'4' 276' 23'•1- 15'-11' 20-.7' 20-.11' 13'•5" 174' 17'-8" 4'-0' 130 MPH 17'4' 21'-5' 21'-10' 15'•5' 19.9" 20'•1" 17-11' 15'-11' 16'•3' 4'-0' 110 MPH 13'-5' 16'•8' 16-11' 13'•5' 16'6' 16'•11' 174' 157-3' 15'-7' 4--0- 150MPN 13'-5" 16'-a' 16'-11' 13'•5' 1F-5- 16'-11' 1174- 14'6' 1d'•10' d'-0' now: .ale nxx pane w = main wain - was wain - overnang. PLANS REVIEWED CITY OF SANFORD �4 , � N tL !•f Q1 � • N J LLr4^ E H � O O c= V1 'Mo1u Um v `ron C0023 > o O 1- p 06j E W a -x milli -0 V^JY ,r al N H m Nv 0 0 J eW ^ i.- -.1 J ad Q C/) D 0 O z0 U .(9-t) - - ZcAwZOLLJ 0 C3 co Q = W J U < W :� � m "t W- Fes'-Qop W J U g N— ofPDcr}i'– o=�J0 f < W 0U LL 1n _ O U Z CV Q C G Q J Q UJ 2 N J N 6L ] m H J LL oa^ U0 C to >— N co QO �m CO oxmt- >>1ii� W LLICOZ- J O O LL U Wvu1LL C 2NW 00 Wm CU �o r J� "T �u SEAL 'SHEET 8 09-15-2004 OF 10 MANUFACTURERS PROPRIETARY PRODUCTS 1.1/4' DRYWALL SCREW GLUED SIDE Nre III C O 0.024' OR 0.030' THICK H-14 1.0 # DENSITY E.P.S. FOAM OR H-25 ALUMINUM ALLOY (TYPICAL) METALS USA BUILDING PRODUCTS L.P. PRO -FAB 7116" O.S.B. & 0.024" ALUMINUM COMPOSITE PANEL SCALE: 2"= 1'-0' Notes: 1. Total roof panel width = room width + wall width + overhang. 2. Spans may be interpolated between values but not extrapolated outside values. Table 7.3.4 Allowable Spans for W Panels for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 H-28 2-112- x 12- x 0.028- W Panels Open Structures I Wind MonoSloped Roof Region � 18.2 3 4 span span span Screen Rooms _ i Attached Covers 14,2 3 4 span span span Glass i Modular Rooms _Overhang / Enclosed Cantilever 14142 3 4 All span span span Roofs 100 MPH 11'-8' 15'-1' 15'-5' 11'-5' 1 14'•1' 14'-5' 10.0 13'-1' 174• Y-10' 110MPH 10.11• 14'-1' 14'-5' 10'-9' 13'4- 13'-7• 9'•7" 17.4• 12'-7• 1•8" 120 MPH 10'-3' 17.40 13440 !Cr.!" 174• 1Z-7 9'-1• 1V.2' 11'-5' 3'05' 123 MPH 10'-2' 13••1" 13'-5' 9.11' 12'-4' 12'-7• 8'•11' 11'-0' 11'-3' 7- 130 MPH 104• 17-8- 175- 17-11' 9-7- 11'-10- 12'4• 8'S7 165- 10-11- T 3• 140 MPX 74• 11'-0 11'-10- 9'-2' 11'-4• Ill.?, 8 '•3' 10 '-7 10'4• 3'•1- 150 MPH 8'-11' 10-11' 11'-7 a'•9• 10'-9' 10'-11' T-10' 1 7S' I 9--10- 2'-11' 1_117' . 17- . 0 a3a- w P....1. Open Structures Wind MonoSloped Roof Region 14,2 3 4 span span span I Screen Rooms 6 Attached Covers 14,2 3 4 span span span Glass 8. Modular Rooms Overhang I Enclosed Cantilever 14,2 3 4 All span span span Roofs 100 MPH 13'-1• 16'-r 16'4• 17-3' 15-1• 15-5 10'-11' 14'-0• 14'3' 4'.0- 110MPH 111•90 15•-1' 15'•5• 11'-7- 1414• 1a' -r 10.3• IXwZ" IY-W T-11' 120 MPH 10.11• 14'•3' 14'-7- 10-10' 13'•5' 13'5- 74• 17.5• 12'5' 3'•8- 123MPH. 10-10- 14'•1' 14'4• 105• 13'-2' 1X-6' 9-r 11'•10• 17-5• T•r 130 MPH 104• 13'•7' 10.10• 10-3' 1ZS• 17.11• 7.7 Iv -5•11'4• 18'5' 3'4- 110MPH 10-0' 1Z-10' 17.1- 9.10• 1Z•1' 173' 8'-10' 10.10- 11'•1' 3.3' 150 MPH 9'4' 1 17.3• 12'4' 9.4' 11'4' 1 11'•9' 8.4' 1 10.4 1 10'-r 1 7 -2 - num. n uai - Pane. wham = room wham + was with + ovemang. MANUFACTURERS PROPRIETARY PRODUCTS is W a K QUO >Iq N 0.024' OR 0.030' THICK H-14 1.0 # DENSITY E.P.S. FOAM OR H-25 ALUMINUM ALLOY (TYPICAL) METALS USA BUILDING PRODUCTS L.P. PRO -FAB COMPOSITE PANEL WI EZ-LOK SCALE: 2' = 1'-0' Nota: 1) Total roof panel width •room width + wag width + over". 2) Spans may be interpolated between vales but not extrapolated outside values. 3) The Sun Ray roof panel system is designed to span from support to support mated to a full 40' PRO -FAB panel between Sun Ray panels or between (2) 24• solid penis. Reference Table 7.3.6 or 7.3.7 for avowed spans of the Sun Ray roof panel system. FOAM CORE THERMALLY BROKEN METAL SKIN ALUMINUM EXTRUSION SUN RAY ROOF PANEL 3" x 24" - TWIN WALL FULL LENGTH SYSTEM SCALE: 2" = 1'-0' Table 7.3.5 Allowable Spans for 0.024" PRO -FAB 7116" O.S.B. 8 0.024" Aluminum Composite Panels wl EZ -LOCK for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 M-14 or H-25 Foam Core E.P.S. 81 Density e_ x 40- x u.u24_ moor Panel I K value a 10.141 Open Structures Screen Rooms Wind MonoSlop_e_d Rool i Attached Coven Region 1 18.2 1 7 1 4 1 tit 1 7 1 4 6' x 48' x 0.024- Roof Panel ('R' Value s 23.74) ,closed Cantilever 3 4 All span I span Roofs Wind Region Open Structures Mono -Sloped Roof 18.2 3 4 span span span Screen Rooms i Attached Covers 18.2 3 4 span span span Glass i Modular Rooms Overhang I Enclosed Cantilever 18.2 1 4 All span span sPen Roofs 100 MPH 24'-9• 27'5• 26'•7 23'-r 26'•5• 25'5• 16•6• 20'4- 17-11- 4'-0' 110 MPH 24'•9' 27S" 264•9' 214.90 24'•3' 2Y.6- 15'-11' 19'•1' 165- 4.4. 120 MPH 23'-r 26'•5' 25'5' 20'-3' 27-r 21'-10' 14•.7' 1T4' 15'-9• 4'-0' 123 MPH 275' 25'•5' 24'5• 175• 21'•11' 21'•3• 14%2" 15-10' 15'-4' 4'41 130MPH 20'•11• 23'-5' 27-7- 18'5' 25-w 19'•11• 17.5 IV - %r 4'.0' 140 MPH 14.4' 15'•11• 15'•5' 14'4• 15'-11• 15'•5' 1Z•7- 14'-0• 13'-r 4'.0' 1SOMPH 1 14'4• 15'•11' 15'•5' 1 14'4' 15•11' 15'•5• 11'•1' 13'-1- 15'•11' 4'.W a- . 4a• . 01114' Rmr P. -I rR' Vakr sale 741 Wind Region - Open Structures Mono -Sloped Roof 18.2 3 4 -span- -span span Screen Rooms 4, Attached Coven 162 3 4 span -span span Glass i Modular Rooms Overhang I Enclosed Cantilever 181 3 1 All _ `span span span -•Rook 100 MPH 26'•9' 29.11- 26.11• 25'-W 1 26'-6• gra' 17.11- 27.3- 21'5' 4'40 110 MPH 26-9' 27.11- 28'-11- 23'5' 26'-3' 25.4• 18'•5' 20'5' 17.11• 4'-0' 120 MPH 25'5- 28'4- 27'•0 21'-10• 24'-5• 23'•7" 15••a• 18••11• 18••3• 4'-0• 123 MPH 24'4' 27'-5' 264• 21'-3' 27-7 27.11- IV4" 78'4' 1r-9• 4'-0- 130 MPH 27-r 25'-T 24'•5" 19.11- 27-7 21'4' 14'4' 16.3• 15.5' 4'-0' 140 MPH 15'•5' 1 10-3• 16'4' 15.5' 17".3• 164' 17•7' 15-2' 14'-4 4440 150 MPH 15'•5' 1T-3' 16'5• 15'-5' 17•-3• 16'-8• 17.7- 14'-1• 13'-0 d'-0' Wore. . over roc. pane. wham room .Warn waa w.au. Rveman9 Table 7.3.7 Allowable Spans for 0.030" PRO -FAB Composite Panels wl EZ -LOCK for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 3105 H-14 or H-25 Foam Core E.P.S. 8/ Density 3- x las- x 0.030" Roof Panel w/ EZ -LOCK Open Structures MonoSioped Roof 14.2 3 4 span span span Screen Rooms i Attached Coven 14,2 3 4 span span span Glass 4, Modular Rooms Overhang I Enclosed Cantilever 14,2 3 4 All span span span Rools 100 MPH 20.9' 30-11' 29'•11' Open Structures Wind Mono -Sloped Roof Region 14,2 3 4 span span span Screen Rooms 4, Attached Covers 162 3 4 span span span Glass 4, Modular Rooms Overhang I Enclosed Cantilever 1&2 3 1 4 All span span span Roofs 100 MPH 24'•11• 27-11• 27'-0' 23'-10' 265' 25'•7 18'5' 20.10' 20.7 4'-0' 110 MPH 24'•11' 27.11' 2r -W 21'41' 24'4' 23'-8• 16'-2' 17-3' 18'-8' 4'-0' 120 MPH 2740' 265' 25'•9' 20.5' 27-10' 27.1' 14'5• 174-80 15-10' 4'-00 123 MPH 27.11' 25•-7• 24'•9• 19'•10• 22'-2' 21'•5' 14'4• 16-0• 1V-6' 4'40 130 MPH 21'•7 23••7' 27-10" 18.5' 20.10• 20.2' 174" 15'-2" 14'5• 4'-0- 140MPH 14'-5' 16-2' 15••7• 14'•5- 16-2• 15••r ITT l4'-2' 4'-0' 20'-2- 1SOMPH 14'•5' 16'-2' 15'•7' 14'•5' 16'-2• 15'•0 11'-7 1T-2' 1 20'-7 1 19-6' I 4' . 4a" x 0.030• Raaf Panel w/ EZ -LOCK 19'-6' 14'-9- 17'-5' 15'•11' 4'.W 14'-7' Wind Open Structures MonoSioped Roof 14.2 3 4 span span span Screen Rooms i Attached Coven 14,2 3 4 span span span Glass 4, Modular Rooms Overhang I Enclosed Cantilever 14,2 3 4 All span span span Rools 100 MPH 20.9' 30-11' 29'•11' 26.5• 29'4• 28'-r 20S• 27.1' 2Z4• 4'.W 25'•7 2T-9' 30-11' 29'•11' 24'4' 2T-2' 26•-7 IVA' 21'•5• 205- 4'-0• I 264.5' 29'4• 28••r 275• 25'4• 24'-5' 1r -V 17.7' 18'•11- 4'-0' 26-6" 25'•5' 28'-5' 27'-5' 21'-11• 24'-7' 23'-7 15.10• 19'41 18'•5• 4-0- 24'•9' 27-S' 26•-2' 25'4' 205' 23'-1" 274• 15'-0• 17'•11- 16'•3' 44415'•11-17'•11• 29'4' 1T•3• IVAl' 17'•11' 1T -T 14'-0' IV -8' 15'•7 4'-0'15'•11' 17'-11' 17'•3' 15'•11• 1T-11' c-. u•.na1T a...No .-1Q1J- 1T•3• 73'•1' 1 14'-7' 1 14•-1• 4'-0' Wind Region Open Structures MonoSlaped Roof 192 3 4 span span span Screen Rooms i Attached Coven 112 3 / span span span Glass 4, Modular Rooms Overhang Enclosed Cantilever -TUT-3 4 All span I span span I Roofs 100 MPH = 34.11' 13'•9' 29.9' 33.3- 32'•2' 23'-3• 26-0' 25'•7 4'-0' 110 MPH 31'-0 34'41• 33'-9• 27'.4' 30-7- 29'•7' 21'4' 24'-7• 23'•3' 4'.0- 120 MPH 27.7 33'•0 37-2- 254' 26-6" 2T4' 19.9' 27-1• 21'4' 4'-0' 123 MPH 26-7' 31'-11• 30'•11' 24'•9' 2T•8' 26'-g" 19'•2' 27'-5' 20'•9' 4--0- 130 MPH 1 26-5' 29'4' 28'4' 23'-3• 26'-0' 25•-2' 21'-1' 20-2' 174' 4'-0' 140 MPH 18'-W 20'.2' 19.6' 16'-0- 20'-2- 19'-6' 15'•10' 18'5• 1F -W 4'-0' ISO MPH 18'•0' 1 20'-7 1 19-6' I 18'-0"1 20'•2• 19'-6' 14'-9- 17'-5' 15'•11' 4'.W Open Structures Wind Mono -Sloped Roof Region 18.2 3 / 1 span span span Screen Rooms i Attached Covers 192 3 4 span span span Glass 6 Modular Rooms Overhang I Enclosed Cantilever 18.2 3 4 All span span span Rools 100 MPH 3Z-8' 36.7' 354• 31'•2• 34•10' 33'5' 24'4' 27'-3' 26'4' 4'41 110 MPH 375' 36'•7' 35'4' 2V -S' 37-1' 30.11- 27.7- 25'-3• 24'•5' 4'.W 120 MPH 31'-2' 34'-10' 33'-8' 26•8' 29-10' 28•10 20'-8• 23'•1' 22'-4- 4'-0- 123MPH 29'-11• 33'4' 32'-5' 25'-11' 28'•11' 26'•0' 20'-1' 2740 21'5' 4'-0' 170 MPH 2TS' 30'-11' 29'-10 24'4' 27'-3 267 18'-11' 214•1' 20-5' 4'40 140 MPH 18'-11' 21'•1' 20-5' 18'•11' 21'-1' 20'•5' IT -6" 17.7' 18'•11' 17-4' 150 MPH 18'-11' 1 21'4' i 20.5- 16-11• 21•-1' 1 20'-5' 15•-5' 16'•3- 17'•8• 17'•3• now: row. FORT pane. worm -room wrum - wan wham - overnang Table 7.3.8 Table 7.3.6 Allowable Spans for 0.024" PRO -FAB Composite Panels wl EZ -LOCK for Various Loads Metals USA Building Products L.P. Manufacturers Proprietary Products: Aluminum Alloy 7105 H-14 or H•25 Foam Core E.P.S. 81 Density 7- x 48• x 0.024' Roof Panel wl EZ -LOCK Wind Region Open StructuresScreen Mono -Sloped Roof 162 7 4 span span span Rooms 8. Attached Covers 162 3 4 span span span Glass i Modular Rooms Overhang I Enclosed Cantilever 162 J 4 All span span span Roofs 100 MPH 21'•4' 23'•10- 23'40- 204' 27.9- 21'-11• 15'-1" 17'-9• 16'•3- 41-0' 110 MPH 21'-4' 23'•10' 27.0' 184-0• 20'•11- 20'-2' 134•9' 15'3' 141•10• 4'-0' 120 MPH 203' 22'-9• 21'•11' 17'•5' 19'•5- 18'•10' 12'•6' 13'-11' 13'-6- 4'-0' 123 MPH 19'-6• 21'-10' 21'•1' 15'•11• 18'-11• 18'•3' 11'-8• 13'-8• 172' 4'-0- 130 MPH 1S%W 20'•2• 19'•5- 15'-1' 17'-9• 16'•3' 11'-1• 17-11' 17.61 4'-0' 140 MPH 174• 17-9" 13'-3' 17-4' 13'•9' 13'•3' 10-7 11.4' 11'-1' 4'-T 150 MPH 1744 13'-9' 17'•3• 17.4• 13'•9- 17.3- 94• 10'S• 10'1' T-11• A- x as- It 0.021- Hear Panel w/ EZ -LOCK I Screen Rooms 6 Attached Covers 112 3 4 span span scan Glass i Modular Rooms Overhang I Enclosed Cantilever 18.2 3 4 All soon. span span Roofs 100 MPH 26.5• 294• 26.5• Wind Region Open Structures Me loped Roof 18.2 3 4 span span span Screen Rooms i Attached Covers 3 4 span span Glass i Modular Rooms Overhang I Enclosed Cantilever 18.2 3 4 All span span span Roofs 100 MPH 23'•5' 26'-2' 25'•3• 110 MPH 24'•11• 24'-1• 1T-5• 19'-6• 16-10• 4'-0' 110 MPH 23'•5• 26'-2' 25'•3• 25.2' 27.11- 27.2- IVA' 18'-0' 1T -Y 4'-0' 120 MPH 27.3• 24'-11' 24'•1' LIT 21'4' 20.0 IY-9' 15'-4' 14'•10' 4440 123 MPH 2144' 23'-11' 234•7 24'-11' 20.9' 20'-0' 13'-5' 14'•17• 11'5• 4'-0' 130 MPH 17-9• 27-1- 21'.4• 17- 40 17.6' 184•10' 174' 14'-2- 134-0• 4.41 110 MPH 13'5' 15'•1' 14'-r -6- IVA- 144.7' 11'4' 1T-7150 17-5' 17.11• MPH 1T4' IVA' 14'-7' 0240 21.0' 24'40 1 24'.0• 1 24'-0• 24•-0• 15.1' td' -7' 70'•5' 174' 1141' 4'-0' a- x 40- x 4.424- Roof Panel wl EZ -LOCK Wind Region _.. Open Structures Mono -Sloped Roof 162 3 4 span span span I Screen Rooms 6 Attached Covers 112 3 4 span span scan Glass i Modular Rooms Overhang I Enclosed Cantilever 18.2 3 4 All soon. span span Roofs 100 MPH 26.5• 294• 26.5• 2V.2* 26-P 27".2' 1945' 21'•11' 21'-3• 41-0' 110 MPH 26'-5 275' 28'5• 23'•7 25•10• 24'.11• 18'-7 204• 19'5' 41-0' 120 MPH 25.2' 28'-1• 2r•2' 21'5' 24'-1• 23'•3' ISS• 18'-8• 16-0• 4•-0' 123 MPH 24'.2' 2T.7 26•1- 20'-11• 27•5' 22'•7' IVA" IVA" 1T4' 4'-W 130 MPH 27.4' 24'-11' 24'-1' 175' 21'•11' 21'•3- 14'4• 15-11' 15'-5• 4'0 140 MPH 15'•3' 17- 40 16'-5• 1T-3- 10-04 IF -5' 13'4' 14'-11' 14'-5' 4'-0' 150 MPH 15'•7 IT -W 16'-5 15.3' 1114 16'-5' 17-5' 17.11• 73'-5' 1 4'-0- Wind Region Open Structures Mono -Sloped loped Roof -TIFF-3 4 span I span span Screen Rooms i Attached Cove 18.2 3 4 span span span Glass i Modular Rooms Overhung I Enclosed Cantilever 1:2 3 4 All span span span Roofs 100 MPH 27.1- 374' 31'-5• 27'-0' 30-11' 27.11' 21'5• 24'•3' 23'•5- 4'-0' 110 MPH 27.1' 374• 31'•5' 25'4• 264• 27'4• 20-1• 27-5- 21'4• 4•-0• 120 M_ PH 27' 30.11• -11•23 7 264' • • 1S'-5' _2F7- -I '•10' 4'-0- 123 MPH 26'-80 29%9" 28'-9' 27.1- 25-9' 24'-11' 1r-10' 17.11- 19.3• 4'.0- 130 MPH 247 27'4• 26'-6' 21'5• 24'-3'. 23'•5• 15'-9• 18•-9- 18'-2• 4'.01- .140 MPH 16'•9' 18'-9- 18•-T 16'•9• 181-9' 18•-2' 140.9' 17'3' 15'•11- 24'40 150 MPH 16'•9' 18'•9' 1 18'•7 76'-9' 18'•9' I 18•-2' I 13'5' I15'3' 14'•10' a'-0' Maximum Panel Spans - Dead and Live Load and/or Snow Load (Lbs. I Sq. Ft.) O.S.B. Composite Panel with Splines, Enclosed Buildings Metals USA Building Products L.P. Rotes: 1. Spans are derived from lest data for O.S.B. composite panels with spline of 02 spruce. pine or hr. Use V180 for Roof and Wall Span Tables and L/360 for Floor Span Tables. 2. Top skin for floor panels should be ovenayed with a minimum of 7116' finished Mooring perpendicular to the panels. / 3. Dead and live load values provided for sNngle roofs only. For Ole roofs consult engineer. 4. Splines shall be lull length of panel and shall not be spliced. 5. Maximum length of panel shag riot exceed 24'40. ✓ 10 -'I w, -a "o , N , N J LL^n E C= UrivM� V C002 4j U T -0 m Q WIC h v1 � O L.C0000v F L V N W W d - X r° Nuo W C III�I 131 ; � W ro ■III •� bn U. IV7 I JY r W N H 7 Q m CO v "a J � W n � J ad Q fnD XZ > io 0 Z o - --(9 u- cn Z_cnWZ_Ow Q C3 C3Q �_ m Q=L�t)JEj~ W (n (r (r m 'it~ W I-QO0 W J00014 W P: 5 iE } I- ad��OJ2W 0 to LL W 2v O _ O 7"Q Z (V r Q J Q W QN LL nJ h J LL OQ� 1✓ 20It 19 �N N to 0. %' w O m 19 D] W a0 OJmv- tu Z)W W in LLl Z - J OHO W LL ma U We�LL C 2N~ N OO 3 LU Z to JJ ti I t.11USEAL SHEET 8 09-15-2004 I OF J 10 Wind Speed .100 M.P.M. Wind Spend .110 M.P.M. Panel Thickness Deflection None Overhang Span 1 ft. 2N. 3K 1 4N. Panel Thickness Deflection Overhang Span 1 K 2 N. 3K. 4N. 4112• U1s0 15'4• 15'•1' 15'4• 164• 17'•10' 4112' U180 14'$ 14'•11• 15'•11' 17' 7' U240 14'•1' IT' 87 13-11' 14'•11- 15'-11- U240 13'4• 13'-0 14'-r 15'-r U360 17.3' 1V -W 11'-11' 13'•3• 14'-3' 114'-7' U360 11'•2• 11'•5• 12'•11• 13'•11' 6112' U180 21'•1' 20'4' 20'•9- 21'•7 27-9• 6112' U180 20'•7 20.5' 21'-5• 22'-5' L1240 17-7 18•-7' 18•-10• 19'•10' 20-10• U240 18'3• 18'-7' 17-7• 20-7' Lrmo 16•-2' IV -9• 15'•11• 104• 18.4• U360 1V-4- 15'•7• 16-0 19'-3• 8114' u180 24'4r 24'-0' 24'-0• 24'-0' 24'-0' 8114- U180 2a'-0• 24'40 2d'-0' 24•-0' 11240 23'4' 27-r 22'•10' 23'•10' 21'-0' U240 27.2' 27-7 2Z4' 27.6" 24'40 1.1360 1 20'-5' 1 19-9' 20'-0 1 21'40 27-0• U360 194• 19'•5' 19'•6' 205' 21'5' 10114• U18024'-0' 24'41 24'.0• 24'.0• 24'-0• 10114- U180 24'-W 24'-0• 24'-0• 24'4r 24'•0' 0240 21.0' 24'40 1 24'.0• 1 24'-0• 24•-0• 0240 24'-0• 24•4' 24'-0• 21'.0- 24'-0• V760 22'•10' 27.1' 1 22'4• 1 23'4' 1 24'-0'- U760 21'44-21'-S' 21'-11• 27.11• 23'-11' WiZ Speed - 120 M.P.H. Wind Speed .140 M.P.H. Panel Thickness Deflection 1 None Overhang Span I 1 K 2 fl. 311. 1 4N. Panel Thickness Deflection NoneK20'-S" Overhang Span It. 2 N. 31L 4H. 4112- U180 13'5' 1T4' 13'-7• 14'•7• 15'•7' 4112- U180 17.5• 17.9' 17-9' 14'-9' U240 12'•5' 11'•9' 12'4• 13'4' 14'4• U240 10'•11' 11'•3' 17-r 13'•7' U360 10'4' 10-3• 10'4' IV -6' 12'•10' 1.1360 9-6'9'•10' 10'•10- 11'•10' 6112' U180 18'-11' IVA" 18'4• 19'4' 204• 61/2• U1a0 164• 16'•8- 18'•3• 19'•3' U240 16'4• 15'•11' 16'•7 17'5• 18'5- Lr240 14'.10' 15-2' 16-7 1T r U360 14'-3' 13'•11• 14%2" IV -2" 16'•2' U360 12-11• 13'-T 14'-3' 15••3' 8114' U180 27-W 21'.11' 22'•3• 23'•3• 24•-0' 8114' U780 20'•7' 20'-11• 21'•11• 2Z-11' 1'•3• 27-3• U240 20'•11' 19'-11'a7' U240 18'5' 18'-9• 19'•0' 26-0• 21- o - U360 19'-3- 17'-6" 8'-9' 17.9• U360 15'-9• 15•-10' 16'•1• 17'5'• •1r4t: 10114" U180 24'41 244-W 4'-0' 24'4" 10114' I U180 23'•0' 23'-1' 23'4' 21'-0' -24'-0' U240 23'-5' 273' 3'•7- 24'-W L1240 20.11• 20.11' 21'-3' 27-3' .23'•3• L1360 20'-5. 19'4' 0'-9' 1 21'•9- 18'4' 16'•0 1.9'-T 20'-7' Rotes: 1. Spans are derived from lest data for O.S.B. composite panels with spline of 02 spruce. pine or hr. Use V180 for Roof and Wall Span Tables and L/360 for Floor Span Tables. 2. Top skin for floor panels should be ovenayed with a minimum of 7116' finished Mooring perpendicular to the panels. / 3. Dead and live load values provided for sNngle roofs only. For Ole roofs consult engineer. 4. Splines shall be lull length of panel and shall not be spliced. 5. Maximum length of panel shag riot exceed 24'40. ✓ 10 -'I w, -a "o , N , N J LL^n E C= UrivM� V C002 4j U T -0 m Q WIC h v1 � O L.C0000v F L V N W W d - X r° Nuo W C III�I 131 ; � W ro ■III •� bn U. IV7 I JY r W N H 7 Q m CO v "a J � W n � J ad Q fnD XZ > io 0 Z o - --(9 u- cn Z_cnWZ_Ow Q C3 C3Q �_ m Q=L�t)JEj~ W (n (r (r m 'it~ W I-QO0 W J00014 W P: 5 iE } I- ad��OJ2W 0 to LL W 2v O _ O 7"Q Z (V r Q J Q W QN LL nJ h J LL OQ� 1✓ 20It 19 �N N to 0. %' w O m 19 D] W a0 OJmv- tu Z)W W in LLl Z - J OHO W LL ma U We�LL C 2N~ N OO 3 LU Z to JJ ti I t.11USEAL SHEET 8 09-15-2004 I OF J 10 General Notes and Specifications: The following extrusions are considered to be'Industry Standard' shapes. The properties are based on die drawings furnished by Florida Extruders International, Inc.. 1.00' A = 0.243 in.' WT = 0.278 p.l.f. 'oo Ix=0.136 in' 0.044' -) N Sx = 0.137 in.' -4c 6063 - T6 1" x 2" x 0.044" OPEN BACK SECTION SCALE: 2' = 1'-0' 1.00' A = 0.287 in? WT = 0.329 p.l.f. Ix = 0.368 in.' 0.044 a Sx = 0.247 in' M 6063 - T6 1" x 3" x 0.044" OPEN BACK SECTION SCALE: 2'= 1'-0' * 2.00' * A = 0.424 in.' WT = 0.486 p.l.f. c Ix = 0.232 in.' 0.044' +N. Sx = 0.234 in.'• �k 6063 - T6 2" x 2" x 0.044" PATIO SECTION SCALE: 2'= 1'-0' * 2.00' * A=O .496 in.' I I WT = 0.568 p.l.f. Ix = 0.276 in' 0.055' Sx = 0.279 in.' fl_� 6063 - T6 2" x 2" x 0.055" PATIO SECTION SCALE: 2' = 1'-0' 3.00' A=0.716in.' I I WT = 0.820 p.l.f. c Ix = 0.477 in.- n'0.07 - + N 0.07027[ - Sx = 0.477 in' �F 6063 - T6 3" x 2" x 0.070" PATIO SECTION SCALE: 2' = 1'-0' 3.00' SCALE: 2'= -�C A = 1.081 in.' S.M.S. c 0.044' N WT = 1.239 p.l.f. 0.093 1 bo Ix = 1.523 in.' A = 0.954 in.' Sx = 1.015 in? Ix = 4.854 in.' 6063 - T6 3" x 3" x 0.093" PATIO SECTION SCALE: 2' = 1'-0' 2.00' 3.00' I I A=0.613 in? A = 0.562 in.' WT = 0.702 p.l.f. + c Ix = 0.773 in' 0.045 " Sx = 0.515 in' 0.045 6063 - T6 2" x 3" x 0.045" SPECIAL SECTION SCALE: 2"= 1'-0' 3.00' I I WT = 0.620 p.l.f. A = 0.562 in.' Ix = 0.640 in' WT = 1.122 p.l.f. 0.093 + c �i Ix = 0.762 in.' Sx = 0.920 in' 6063 - T6 3" x 3" x 0.045" FLUTED SECTION SCALE: 2' = 1'-0' A = 1.438 in? I A = 0.772 in.' 0.125 ' -F c WT = 1.648 p.l.f. WT = 0.885p.1.f. Ix = 1.984 in.' 0.046' +$ c Ix = 1.940 in., Sx = 1.323 in.' � � Sx = 0.959 in? 6063 - T6 6063 - T6 3" x 3" x 0.125" PATIO SECTION SCALE: 2' = 1'-0' STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 3.00' A = 0.451 in? A = 0.451 in? I I WT = 0.620 p.l.f. WT = 0.620 p.l.f. Ix = 0.640 in' 4.00' Sx = 0.427 in? - + 0.050' a 6063 - T6 0.045 Ix = 0.336 in. N Sx = 0.336 in.' 2" x 4" x 0.050" PATIO SECTION SCALE: 2'= 1'-0' A T 1.938 WT = 2.221 p.l.f. S.M.S. c 0.044' N -'k 6063 - T6 'S ,^'r, 0 0 0 c A = 0.954 in.' c Ix = 4.854 in.' 3" x 2" x 0.045" PATIO SECTION SCALE: 2"= 1'-0' 0.125' + Sx = 1.195 in.' a Sx = 2.427 in? 6063 - T6 2" x 5" x 0.062" PATIO SECTION SCALE: 2' = l'-0' 6063 - T6 WT = 3.474 p.l.f. O 00 v * 2.00' A = 0.451 in? I I WT = 0.620 p.l.f. c Ix = 0.640 in' + o.oas - „li Sx = 0.427 in? - + 0.050' a 6063 - T6 2" x 3" x 0.045" PATIO SECTION SCALE: 2' = 1'-0' * 2.00' Z(nWZOQ I I A = 0.685 in.' * 2.00' * o A= 0.592 in.' WT = 0.785 p.l.f. c Ix = 1.393 in.' - + 0.050' a Sx = 0.697 in? 0.355 6063 - T6 2" x 4" x 0.050" PATIO SECTION SCALE: 2'= 1'-0' 2.00' S.M.S. c 0.044' N UPRIGHT: Ix 'S ,^'r, 0 0 0 c A = 0.954 in.' = 0.694 in.' Sx = 0.466 in. WT = 1.093 p.l.f. 0 Ix = 2.987 in' - + 0.067 c Sx = 1.195 in.' H� 6063 - T6 2" x 5" x 0.062" PATIO SECTION SCALE: 2' = l'-0' 4" x 4" x 0.125" PATIO SECTION SCALE: 2'= 1'-0' * 2.00' A = 0.482 in? WT = 0.552 p.l.f. c Ix = 0.609 in.' 0.050._E .050' f M Sx = 0.406 in? I 6063 - T6 0.050" TILT SECTION SCALE: 2' = 1'-0' * 2.00 A = 0.582 in' WT = 0.667 p.l.f. 5 Ix = 1.228 in.' 0.050' ) a Sx = 0.614 in? 6063 - T6 2" x 4" x 0.050" TILT SECTION SCALE: 2' = 1'-0' 2" x 4" x 0.046" x 0.100" SELF MATING BEAM SCALE: 2' = 1'-0' 2.00' A = 0.964 in' WT = 1.105 p.l.f. 0.049' o Ix = 3.691 in.' N Sx = 1.468 in' 0 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 2" x 5" x 0.050" x 0.120" SELF MATING BEAM SCALE: 7 = 1'-0' 2.00' 7 A = 1.095 in.' WT = 1.255 p.l.f. 0.050' + o Ix = 5.919 in' Sx = 1.965 in. 0 6063 - T6 0 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 2" x 6" x 0.050" x 0.120" SELF MATING BEAM SCALE: 2' = 1'-0' 2.00' f A = 1.259 in? WT = 1.443 p.l.f. 0.055" + S Ix = 8.746 in' n Sx = 2.490 in? 6063 - T6 0 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 2" x 7" x 0.055" x 0.120" SELF MATING BEAM SCALE: 2' = 1'-0' 2.00' A = 2.250 in? - - - WT = 2.578 p.l.f. 0.055' o Ix = 15.427 in! r. Sx = 4.408 in' U;C1 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM * 2.00' i 7 A 7= 1.990 in.' WT = 2.280 p.l.f. Ix = 21.981 in. 0.082' = + o Sx = 4.885 in.' O1 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 2" x 9" x 0.072" x 0.224" SELF MATING BEAM SCALE: 2' = 1'-0' 2.00' * -- -- fo 0 A = 2.355 in.' WT = 2.698 p.l.f. 0.082' + o Ix = 26.481 in.' CD Sx = 5.885 in.' 6063 - T6 2" x 7" x 0.055" x 0.120" SELF MATING BEAM W/ INSERT SCALE: 2"= 1'-0' STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM * 2.00' I e I N O A = 1.853 in? WT = 2.123 p.l.f. a.or o Ix = 16.638 in.' m Sx = 4.157 in? 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24' O.C. TOP AND BOTTOM 2" x 8" x 0.072" x 0.224" SELF MATING BEAM SCALE: 2' = 1'-0' 2" x 9" x 0.082" x 0.306" SELF MATING BEAM SCALE: 2'z 1'-0' �J 09.15.2004 1 OF 10 Z(nWZOQ ��4 * 2.00' * o A= 0.592 in.' Q= W J W 0 D I I WT = 0.678 p.l.f. 0.044 - UPRIGHT: 00 =)m O Z Z 2.00' * A = 0.666 in' 0.355 d -4, (1S 1/6. WT = 0.763 p.l.f. N ly = 0.369 in.' Sy = 0.369 in.' v J LL S.M.S. c 0.044' N UPRIGHT: Ix 'S ,^'r, 0 0 0 c FROM ENDS, OP = 0.694 in.' Sx = 0.466 in. 2" x 2" x 0.044" PATIO SECTION . - C N td OR BOTTOM AND -')c 16' O.C. 0'044' BEAM: = V N M v� 2 @ -�Il ly = 0.406 in' Sy = 0.410 in? �,� ' > o .- �F 2.00" 0 6063 - T6 WT = 3.474 p.l.f. O 00 v CD LL W = W w u 0.092' + c Ix = 42.583 in. N 1" x 2" x 0.044" OPEN BACK SECTION WITH W I�III d -X Cm m - W `c LL,? 2" x 2" x 0.044" PATIO SECTION SCALE: 2'= (1)#8x2.112' 1'-0' 6063 - T6 ro '� 'Q S.M.S. @ 6- 2'OT STITCH W/(1j .`00 OJT FROM ENDS, TOP T'� A = 0.847 in? 98 S.M.S. @ 24' Q m OR BOTTOM ANDWT @ 16' O.C. OR c _ 0.971 p.l.f. O.C. TOP AND v m J PILOT HOLE W/ 0.044 + UPRIGHT: BOTTOM w N CAP AND (1) #8 x �k Ix = 1.295 in.' Sx = 0.654 in.' 90 ~ SELF MATING BEAM 112" S.M.S. BEAM: INTERNAL 6' FROM ENDS, TOP ly = 0,540 in.' Sy = 0.545 in' a8 J Q OR BOTTOM 6063 - T6 -0 I AND @ 16' O.C. Z 2" x 2" x 0.044" PATIO SECTION WITH p Z 0 - - - -21'x 2`x 0.044" PATIO SECTION -•- - U OV SCALE: 2' = T -T Z J �J 09.15.2004 1 OF 10 Z(nWZOQ 0006P -H * 2.00' * o A= 0.592 in.' Q= W J W 0 D I I WT = 0.678 p.l.f. 0.044 - UPRIGHT: 00 =)m O Z Z Ix = 0.457 in.' Sx = in? W _ f- Q O 0.355 W J (j t3 N 0.044' - + c Q' P: =) & >_ N ly = 0.369 in.' Sy = 0.369 in.' LL O Q V 6063 - T6 0 L (j) PLANS W 0 1" x 2" x 0.044" SNAP CAP SECTION WITH U Z C-4 j 2" x 2" x 0.044" PATIO SECTION SCALE: 2"= 1'-0" Q J Q �J 09.15.2004 1 OF 10 W ZN ~ /1 N {„L j e� 2.Oo' T., T LVED REVIEWED < � �_^ z 4 PLANS Uj ° �/ OF SAN CITY o� m o �t O w m W A = 3.032 in. J ON0 WT = 3.474 p.l.f. CD LL W = W w u 0.092' + c Ix = 42.583 in. V a ci Sx = 8.504 in' � ? X F 6063 - T6 j Z m > W STITCH W/(1j �-'O CIO > 98 S.M.S. @ 24' �. O.C. TOP AND - BOTTOM ' 2" x 10" x 0.092" x 0.369" SELF MATING BEAM SCALE: 2' = 1'-0' k.SHEET -0 I �J 09.15.2004 1 OF 10 (2) 06 x 2.1? S.M.S. @ 6'3.00" 3" x 3" x 0.093" PATIO SECTION CORNER POST FROM ENDS. TOP OR BOTTOM AND SCALE: 2" = 1'-(" FROM ENDS. TOP OR BOTTOM AND 1.00" o @ 16" O.C. OR PILOT HOLE WI CAP T -''IC A = 1.367 in? @ 16. O.C. OR PILOT HOLE WI CAP AND •8 1/T S.M.S. INTERNAL 6" AND @ 16" O.C. I WT = 1.566 p.l.f. FROM ENDS. TOP OR BOTTOM A = 1.367 in.' (1) x FROM ENDS. TOP OR BOTTOM 0.093" _ c 500" WT = 1.566 p.l.f. AND @ 16- O.C. p o + c o Ix = 2.655 in.' LOAD APPLIED NORMAL TO THE 6063: T6 Sx = 1.328 in' 6063 - T6 4' DIRECTION 1" x 3" x 0.044" OPEN BACK SECTION WITH 3" x 3" x 0.093" PATIO SECTION CORNER POST FROM ENDS. TOP OR BOTTOM AND SCALE: 2" = 1'-(" 12) 08 . 2- VT S.M.S. @ 6' FROM ENDS. TOP OR BOTTOM AND 1.00" o @ 16" O.C. OR PILOT HOLE WI CAP T -''IC A = 1.367 in? AND (1) 08 x 1/2' S.M.S. INTERNAL 6' AND @ 16" O.C. I WT = 1.566 p.l.f. FROM ENDS. TOP OR BOTTOM + t7 Ix = 1.892 in.' AND @ 16" O.C. c 500" (2) 1" x 3" x 0.044" OPEN BACK SECTION WITH 3" x 3" x 0.093" PATIO SECTION WALL POST Sx = 1.261 in? T6 LOAD APPLIED NORMAL TO THE 6063 - 3.OIRECTpN 4.00' 1" x 3" x 0.044" OPEN BACK SECTION WITH 3" x 3" x 0.093" PATIO SECTION WALL P.QST SCALE: 2" = 1•-0" (2) 40 x 2.1? S.M.S. @ 6' 1.00' o FROM ENDS. TOP OR BOTTOM AND Ix @ 16" O.C. OR PILOT HOLE W/ CAP A = 1.654 in' AND (1) 08 x 112• S.M.S. INTERNAL 6' f WT = 1.895 p.l.f. FROM ENDS. TOP OR BOTTOM + o Ix = 2.260 in.' AND @ 16" O.C. M e Ix 1.631 in' Sx = 1.507 in? LOAD APPLIED NORMAL TO THE 3' DIRECTION 6063 - T6 c 500" (2) 1" x 3" x 0.044" OPEN BACK SECTION WITH 3" x 3" x 0.093" PATIO SECTION WALL POST H2 4 1.49 B SCALE: 2'= V-17 4.OWO' N A = 3.706 in' o WT = 4.246 p.l.f. Ix = 33.276 in.' 0.07' + + c Sx = 8.314 in.' ao 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24" O.C. TOP AND BOTTOM OF EACH BEAM (2) 2" x 8" x 0.072" x 0.224" SELF MATING BEAMS _ SCALE: 2' = 1'-0" �j- 4.00" 1' F io 0 0.082" + + c A = 4.710 in! WT = 5.397 p.l.f. Ix = 52.963 in.' Sx = 11.770 in? 6063 - T6 STITCH W/ (1) 08 S.M.S. @ 24" O.C. TOP AND BOTTOM OF EACH BEAM (2) 2" x 9" x 0.082" x 0.306" SELF MATING BEAMS SCALE: 2' = 1'-0" >� 4.000' I _ o + + o 0.092" A = 6.063 in? WT = 6.947 p.l.f. Ix = 85.165 in.' Sx = 17.007 in? 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24" O.C. TOP AND BOTTOM OF EACH BEAM (2)2" x 10" x 0.092" x 0.369" SELF MATING BEAMS SCALE: 2" = 1'-0' 4, OWT N N O 0.07' + + o Go $+ c O N A = 4.429 in.' WT = 5.075 p.l.f. Ix = 48.889 in.' Sx = 9.754 in? 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24.O.C. TOP AND BOTTOM OF EACH BEAM (2) 2" x 8" x 0.072" x 0.224" SELF MATING BEAMS W/ 2" x 4" x 0.038" SCALE: T = 1•-0" a.00• N N o A = 4.702 In? A = 3.980 in' WT = 5.388 p.l.f. WT = 4.560 p.l.f. Ix = 62.947 in.' Ix = 43.963 in.' 0.072' _ + + o Sx = 11.425 in.' Sx = 9.770 in' °' 6063 - T6 6063 - T6 STITCH W/ (1) #8 S.M.S. @ 24" O.C. STITCH W/ (1) #8 S.M.S. @ 24" O.C. TOP AND BOTTOM OF EACH BEAM TOP AND BOTTOM OF EACH BEAM (2) 2" x 9" x 0.072" x 0.224" SELF MATING BEAMS SCALE: 2" = 1'-0' o+ 0 1 Z. (2) 2" x 9" x 0.072" x 0.224" SELF MATING BEAMS WI 2" x 4" x 0.038" SCALE: 2' = 1'-0" 0 A = 6.249 in? WT = 7.160 p.l.f. Ix = 101.446 in.' Sx = 16.901 in' 6063 - T6 STITCH WI (1) #8 S.M.S. @ 24" O.C. TOP AND BOTTOM OF EACH BEAM (2) 2" x 10" x 0.092" x 0.369" SELF MATING BEAMS WITH 2" x 4" x 0.038" - SCALE. -2'"= 1•-0"- - �(-2.00" A = 0.569 in? 0.045" - -}- o WT = 0.652 p.l.f. N Ix = 0.332 in' Sx = 0.332 in? 6063 - T6 2" x 2" x 0.045" SNAP EXTRUSION SCALE: 2" = 1'-0" x2.00" A = 0.591 in.' WT = 0.677 p.l.f. 0.045" + o Ix = 0.812 in.' Sx = 0.5451n? 6063 - T6 2" x 3" x 0.045" SNAP EXTRUSION SCALE: 2' = 1•-0" 2" x 6" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" 2.00' 0.062" . +Ll 8 n A = 1.447 in.' WT = 1.658 p..l.f. Ix = 10.151 in. Sx = 2.900 in? 6063 - T6 2" x 7" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" PLANS REVIEWED CITY OF SApFORD 2" x 4" x 0.045" SNAP EXTRUSION SCALE: 2' = 1'-0• r Section Alloy ( 2.00" A = 0.682 in' Ix ly Sx S Rx R in, in. in. in. I in.Z I in.i in., in.3 I in., 0.045 + WT = 0.781 p.l.f 4 H1 6 0.08 0.08 1.18 0H24 e Ix 1.631 in' INT =1.516p.1.f 0.062" Sx = 0.816 in' c Ix = 7.027 in' 6063 - T6 2" x 6" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" 2.00' 0.062" . +Ll 8 n A = 1.447 in.' WT = 1.658 p..l.f. Ix = 10.151 in. Sx = 2.900 in? 6063 - T6 2" x 7" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" PLANS REVIEWED CITY OF SApFORD 2" x 4" x 0.045" SNAP EXTRUSION SCALE: 2' = 1'-0• r Section Alloy 2.00• H tl t2 A Ix ly Sx S Rx R in, in. in. in. I in.Z I in.i in., in.3 I in., in. in, A = 1.323 in.' 6063 T-5 4 H1 6 0.08 0.08 1.18 0H24 3.81 INT =1.516p.1.f 0.062" + c Ix = 7.027 in' 5 H1 5 10.06510.0651 0.96 1 2.45 1 4 43 0.73 1.80 L 1.591 2.14" H2 4 1.49 B 1.74 R = 2.342 in? LlSx 6063: T6 2" x 6" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" 2.00' 0.062" . +Ll 8 n A = 1.447 in.' WT = 1.658 p..l.f. Ix = 10.151 in. Sx = 2.900 in? 6063 - T6 2" x 7" x 0.062" SNAP EXTRUSION SCALE: 2' = 1'-0" PLANS REVIEWED CITY OF SApFORD 2" x 4" x 0.045" SNAP EXTRUSION SCALE: 2' = 1'-0• r Section Alloy W H tl t2 A Ix ly Sx S Rx R in, in. in. in. I in.Z I in.i in., in.3 I in., in. in, Gutter Edge 6063 T-5 4 H1 6 0.08 0.08 1.18 0H24 3.81 4.05 0.96 (T 3.40 L 1.8 1.85 1.89(B) 1.44 R 6063 T-5 5 H1 5 10.06510.0651 0.96 1 2.45 1 4 43 0.73 1.80 L 1.591 2.14" H2 4 1.49 B 1.74 R "-4 A ' �a , � N ry a HJ LL 'v 0 0 a' V v 1 C/7 JJ b v Iron C/7 3 ar LL I w C=O L.0 I. - L L7 ry w L.0 a Tx ro�wc I�III •r ro�LLw I •r JY r '-1om r 41 ry H Q M ca Nv ,--IJ OD w nF 0 J Q (1) D Ix Z > 20 OV ZO C7Q . cn Z_cnWZO D Q 00- H H Q=w J W 0 0 fn } m q 00 wF_F-QoZ W -J 04 0 06 _j 2 W . 0 fn W (1)I w 0 _ � O U Z fV Q J Q f. W 2 N h� LL Odd C 20 C t W <n'no 0) (o Q. C3 CO (D 0 > w 0°D :k W O 01 w J O 0 N.. a� w _ U WpwLL C 2NW 2m CU W -i �a / 6 SEAL SHEET 9B 09-15.2004 I OF 101 Table 9.1 Allowable Loads for Concrete Anchors Screw Size d = diameter Embedment Depth (in.) I Min. Edge Dist. 6 Anchor Spacing Sd (in.) allowable loads Tension he. 114"o ZAMAC NAILIN (Drive Anchors) 26" - 10 SF 114, 1.1/2• '1-1/4• 1.1/4' 1 2739 1 1 316; 1 236# eitia 1320# • 48 SF 19809.72 SF 2640# • 96 SF TAPPER jConcrete Screws 1• 3129.11 SF 3116" 1.114' 15116• 1.314' 15116• 1 28M 3719 1670 2599 114" 1.114• 1-114' 1.314' 1.1/4 427# S44N 20ON 216# 318" 1.1/7 1.7/8' 1.314• 3-318• 1 5110 7030 4020 455N 17800 - 65 SF 1 26700.97 SF 1 35609 - 130 SF POWER BOLT (Expansion Boll) Fastener Length of Diameter Embedment 114" 2' 1.1/a• 6249 26144 5116• 3' 1-7/e" 9369 7519 318" 3.12' 1 1.7/8' 1 1,575# 1.4250 12' 5' 1 2.1/2' 1 2,3329 2.2200 TYPE OF FASTENER a Expansion Bolts (Rawl Power Bolt or Equivalent) POWER STUD edge Anchor - 44 SF 1 1 13039 - 48 SF 1 2410N - 88 SF 136150 - 132 SF 48209 - 176 SF 26064 -95 SF 1 39098 - 143 SF 52129. SF 1'4-314" 1.114• 8129 3269 318" 4.1/4• 1-718• 1,3580 92144 12" 6' 2-12' 2.2719 1,2189 518• T 2.1/4• 3.2689 2.202# 1. Concrete screws are limited to 7 embedment by manufacturers. 2.Values listed are allowed bads with a safely factor or 4 applied. 3. Producls equal to rawl may be substituted. 4. Anchors receiving loads perpendicular to the diameter are in tension. 5. Allowable bads are increased by 1.00 for wind bad. 6. - Minimum edge distance and center to center sparing shall be be. 7. Anchors recemng bads Parallel to the diameter are shear bads. S. A 133% increase has been applied because wind uplift is only bad. Example: Determine the number of concrete arKhors required for a pod enclosure by dividing the uplift bad by the anchor slowed bad. For a 2'x 6' beam with: speckg a 7'-0.O.C., allowed span a 20'-5' (Table 1.1) UPLIFT LOAD - 12(BEAM SPAN) x BEAM 6 UPRIGHT SPACING NUMBER OF ANCHORS - 12(20.47) x 7' x 109 / Sq. Fl. ALLOWED LOAD ON ANCHOR NUMBER OF ANCHORS a 714.709 = 1.67 4279 Therefore, use 2 anchors. one (1) on each side of upright. Table is based on Rawl Products' allowable bads for 2,500 p.s.i. concrete. I for Edee Distances More Than Sd I Table 9.2 Wood & Concrete Fasteners for Open or Enclosed Buildings Loads and Areas for Screws in Tension Only Maximum Allowable - Load and Attributable Roof Area for 120 MPH Wind Zone 127.42 01 SF) (For Wind Regions other than 120 MPH. Use Comrersbn Table at Bottom of this oaae) CONNECTING TO: WOOD for OPEN or ENCLOSED Buildings Fastener Diameter Length of Embedment 1 Number of Fasteners 2 3 4 114"o 1 • 26" - 10 SF 528# - 19 SF 7920 - 29 SF 1056# • 39 SF 1-12• 39611. 14 SF 7920 - 29 SF 11889 - 43 SF 1584# • 58 SF 2-12' 6600.24 SF 1320# • 48 SF 19809.72 SF 2640# • 96 SF 5116'9 1• 3129.11 SF 624# - 23 SF 93644.34 SF 1248# . 46 SF 1-12' 4669.17 SF 9360.34 SF 14049 - 51 SF 18729.68 SF 2.12' 7800. 28 SF 15609.57 SF 23400 - 65 SF 31200. 114 SF 318"e 1• 3569.13 SF 126.26 SF 1068# - 39 SF 14240 - 52 SF 39 1.17T 5349 . 19 SF A-13-AFF 10689.39 SF 16029 - SF 21360.78 SF 2.12• 8900 . 32 SF 1 17800 - 65 SF 1 26700.97 SF 1 35609 - 130 SF CONNECTING TO: CONCRETE [Min. 2,500 pill for PARTIALLY ENCLOSED Buildings Fastener Length of Diameter Embedment 1 Number of Fastener Z 1 ] 4 TYPE OF FASTENER a'Quick Set' Concrete Screw (Rawl Zemoc N211in or Equivalent 114"e 1.11T 2' 1 2330 - 8 SF 1 1 2700-105F 1 4669 .17 SF 1 6999.25 SF 9320 - 34 SF 540N - 20 SF I 8109.30 SF ji IOWN . 39 SF TYPE OF FASTENER a Concrete Screw (Rawl Tapper or Equivalent 3116'9 1.12' 1.314• 2460 - 9 SF 1 3170 - 12 SF 4920. 18 SF 7380.27 SF 9849.36 SF 634' . 23 SF 9519.35 SF 1268# - 46 SF 114"s 1.12• 1.314' 3659 - 13 SF 4650 - 17 SF 730' - 27 SF 109511-40 SF 14609.53 SF 930# - 34 SF 13950. 51 SF 1860# .68 SF 318"s 1-1/7 1.314• 437# - 16 SF 60IN - 22 SF 8749 - 32 SF 13119 - 48 SF 17480.64 SF 12020.44 SF 1803' - 66 SF 2404' - 88 SF TYPE OF FASTENER a Expansion Bolts (Rawl Power Bolt or Equivalent) =-a12050 3.1?2-12' - 44 SF 1 1 13039 - 48 SF 1 2410N - 88 SF 136150 - 132 SF 48209 - 176 SF 26064 -95 SF 1 39098 - 143 SF 52129. SF 12'9 3' 5' 26190 1806' . 66 SF 35120 - 132 SF 54189 - 198 SF 7224# • 3 SF 1 19939.73 SF 1 39860. 145 SFJ 59790 - 218 SFI 7972# • 291 5 1. The minimum distance from the edge of the concrete to the concrete anchor and spacing between anchors shall not be less than Sd where d is the anchor diameter. 2. Allowable bads have been increased by 1.33 for wind loading. 3. Allowable roof areas are based on bads for Glass / Enclosed Rooms (MWFRS); 1= 1.00. 4. For partially enclosed buildings use a multiplier to roof area of 0.77. 5. For section 1 6 2 multiply rod areas by 1.30. WIND LOAD CONVERSION TABLE: For Wind Zoneslftegions other than 120 MPH (Tables Shown), multiply allowable bads and roof areas by the conversion factor. WIND APPLIED CONVERSION REGION LOAD FACTOR 100 19 1.19 110 23 1.08 120 27 1.00 123 29 0.97 130 32 0.92 140 37 0.85 150 43 0.79 Table 9.3 Wood 8 Concrete Fasteners for Partially Enclosed Buildings Loads and Areas for Screws in Tension Only Maximum Allowable . Load and Attributable Roof Area for 120 MPH Wind Zone (35.53 01 SF) (For Wind Regions other than 120 MPH, Use Conversion Table at Bottom of this page) CONNECTING TO: WOOD for PARTIALLY ENCLOSED Buildings Fastener Diameter Length of Embedment 1 Number of Fasteners 2 3 4 1/4'e 1 • 2649.7 SF 5260 - 15 SF 7929.22 SF 10560.30 SF 1-1/7 3960 . 11 SF 792# - 22 SF 11889 . 33 SF 15140 .45 SF 2.1/2' 6609.19 SF 13200 - 37 SF 19809.56 SF 26409 - 74 SF 5`1618 1' 312#-9 SF 624#. 15 SF 9360-26 SF 124ON-35 SF 1-1/r 468# . 13 SF 9369.26 SF 14049.40 SF 1872# . 53 SF 2.12' 780; . 22 SF 1560# • 44 SF 23400.66 SF 31201.86 SF 318'8 1• 3569 • 10 SF 712# • 20 SF 1068# • 30 SF 1424# - 40 SF 1.12• 1 534# • 15 SF 1 1068; . 30 SF 16024 - 45 SF 21360 • 60 SF 2.12' 1 8900.25 SF j 17801111 - 50 SF 2670; . 75 SF .356007100 SF CONNECTING TO: CONCRETE (Min. 2,500 Pali for PARTIALLY ENCLOSED Buildings Fastener Diameter Length of Embedment 1 1 1 Number of Fasteners 2 1 - 3__T 4 PE OF FASTENER -'Quick Set" Concrete Screw (Rawl Zamac Nallin or Equivalent) 1/4'e 1.12• r 2339.6 SF 27044. 10 SF 466# . 17 SF 6990 -25 SF 9320 - 34 SF 5400.20 SF 8100.30 SF I 10000.39 SF PE OF FASTENER a Concrete Screw (Rawl Tapper or Equivalent) -3116:8_ 1.1/r __ -246#-.LSF _497#-.14.SF_ _7360.21.SF_ _9849-25SF 1.314• 3170.9 SF 6340. 18 SF9510.27 SF 12680 - 36 SF 114'8 1-177 1-3/40 3650 - 10 SF 465# - 13 SF 7309 - 21 SF 1IQ. 31 SF 14600-41 SF 9309 -26 SF 13959 - 39 SF 18600 - 52 SF Ye's 1.117 1.314• 437# - 12 SF 6019.17 SF 8749.25 SF 131 /N • 37 SF 1748; - 49 SF 12020. 34 SF 1 16030.51 SF 24049.68 SF PE OF FASTENER a Expansion Bons (Rawl Power Bolt or Equivalent 316"a 2.1/7 3-1/r 1 1205; - 34 SF 1 13030.37 SF 24100 - 68 SF 36150 - 102 SF 48209. 136 S 26069 - 73 SF 39090. 110 SF 52120-147 SF 12'o 3• 5' 18060 .51 SF 1 36120-102 SFI 54180-152 SFJ 72240-203 SF 19930 - 56 SF 3986; - 112 SFJ 59790 - 168 SFI 79720 - 224 SF Notes: . 1. The minimum distance from the edge of the concrete to the concrete anchor and spacing between anchors shall not be less Man 5d where d Is (he anchor diameter. 2. Allowable bads have been increased by 1.33 for wind loading. 3. Allowable roof areas are based on loads for Glass / Partially Enclosed Rooms (MWFRS); I = 1.00. 4. 4. For Glass / Enclosed Roams and Sections 1 6 2 use a multiplier to roof area of 1.30. WIND LOAD CONVERSION TABLE: For Wind ZoneslRegions other than 120 MPH (Tables ShownL multiply allowable bads and roof areas by the conversion factor. WIND APPLIED CONVERSION REGION LOAD FACTOR 100 25 1.22 110 30 1.11 120 35 1.03 123 37 1.00 130 42 0.94 14o ie Oise 150 55 0.91 Table 9.4 Maximum Allowable Fastener Loads for SAE Grade 5 Steel Fasteners Into 6063 T•6 Alloy Aluminum Framing (As Recommended By Manufacturers) Self -Tapping and Machine Screws Allowable Loads Tensile Strength 55,000 psi: Shear 24,000 psi Screw I Allowable Tensile Loads on Screws for Nominal Wall Thickness (T) (Ibs.) Size Nd 0.044^ 0.050^ 1 0.055• 0.072^ 0.082' 0.092' 0.125' 08 0.164" 182 207 228 298 340 381 (Ibs.) 210 0.190" 211 240 264 345 393 441 - 912 0.210^ 233 265 292 362 435 468 - 014 0.250" 278 316 347 455 518 set 749 lie 0.240• 267 303 333 436 497 558 756 5116' 0.3125' 2W 395 434 568 647 726 986 316^ 0.375" 417 473 521 682 776 671 1.154 12' 0.50' 556 631 694 909 1.035 1.162 1,578 Allowable Shear Loads on Screws for Nominal Wall Thickness 't' (lbs. Screw I Single Shear Size Nd 0.044" 0.050' 1 0.055" 0.07T 0.092• 0.092" 0.125' 08 0.164' 175 199 219 266 326, 366 210 0.190" 203 230 253 332 378 424 012 0.210" 224 255 280 367 410 438 014 0.250^ 267 303 333 436 497 558 758 114, 0.240" 256 291 320 419 477 535 727 5116• 0.3125' 333 379 417 546 621 697 947 319• 0.375' 400 455 500 655 745 836 1,136 1/7 1 0.50• 1 533 606 667 873 994 1,115 1,515 Allowable Shear Loads on Screws for Nominal Wall Thickness (Y) (Ibs. Screw Double Shear Size Nd 0.044" 0.050' 0.055" 0.072" 0.082' 0.092" 0.125" 08 0.164' 350 398 438 572 652 732 210 0.190" 406 460 505 664 756 645 012 0.210" 448 510 560 734 836 876 - 014 0.250" 534 606 666 672 994 1116 1516 114" 0.240• 512 582 640 838 954 1070 1454 5116" 0.3125' 666 758 834 1092 1242 1394 1894 318" 0.310 800 910 1000 1310 1490 1672 2272 12^ Notes: 0.50' 1066 1212 1334 1746 1988 2230 3030 1. Spew goes through two sides d members. 2. All barrel lengths: Cetus Industrial Quality. Use manufacturers grip range to match total wall thickness or conreclion. Use tWes to select rival substitution for spews of anchor specifications in drawings. 3. Minimum thickness of frame members is 0.036" aluminum and 26 ga. steel. Table 9.5A Allowable Loads & Roof Areas Over Posts for Metal to Metal, Beam to Upright Bolt Connections Open or Enclosed Structures @ 27.42 #ISF Fastener diam. min. edge min. ctr. No. of Fasteners / Roof Area ISF) distance to cc'. 1 / Ana 2 I Ana 3 / Area 1 41 Area 114^ 12' 516" 1.454 - 53 2.908. 106 4,362 - 159 5.819 - 212 5116" 316" 1100 1,894 - 69 3,788 . 138 5,682.207 7,576.276 318' 314' 1" 2,272 -82 4.544 • 166 6.816.249 9.1188 -331 12"1" 1.114- 3.030.110 6,060.221 9.090-332112 .120.442 Table 9.58 Allowable Loads & Roof Areas Over Posts for Metal to Metal, Beam to Upright Bolt Connections Partially Enclosed Structures @ 35.53 #ISF Fastener diam. min. edge min. ctr. No. of Fasteners / Roof Area (SF) distance to ch. 1 I Area 21 Area 31 Area 41 Ana 114' 12' 98" 1.454-41 2.906.82 4,362-125 5.819-164 5116" 3/8' 718• 1,894 -53 3,788. 107 5.682-160 7,576 .213 318" 314" 1" 2.272-64 4.544-128 6.816 - 192 9.088 - 256 1/r 1" T 1-114' 3.030-85 6.060-171 9.090.256 12.120 - 341 Notes for Tables 9.5 A. B: Allowable Load Coversion 1. Tables 9.5 A 6 B are based on 3 secondAllowable wind gusts at 120 MPH; Exposure •B': I - 1.0. For carports 6 screen rooms multiply the Glass for Edge Distances More Than 5d / Partially Enclosed bads 6 roof areas above Edge Allows le Lw MuNt Iles by 1.3. Distance Tension Shear 2. Minimum spacing is 2-12d O.C. for screws 12d 1.25 6 bolts and 3d O.C. for rivals. 3. Minimum edge distance is 2d for scws,•- - _lid "' 1.21 _ -- ticks. and rivets. 10d 1.18 " re2.00 Table 9.6 Maximum Allowable Fastener Loads Eximillon Type Size Description Aluminum Mandrel for Metal Plate to Wood Support Rivet Diameter Tension (lbs.) Shear Tension (lbs.) Shear Metal to Plywood 129 176 210 325 Sar 112" 4 ply Sia" 4 ply 314" 4 ply 3116' Shear Pull Out Shear Pull Out Shear Pull Out Screw Diameter lbs. (lbs. (lbs.) jibs.) (lbs.) (Ibs.) #8 93 48 113 59 1 134 71 910 100 55 120 69 141 78 ;12 116 71 131 76 /dJ 94 914 132 70 145 ell 157 105 Table 9.7 Aluminum Rivets with Aluminum or Steel Mandrel Eximillon Type Size Description Aluminum Mandrel Steel Mandrel Rivet Diameter Tension (lbs.) Shear Tension (lbs.) Shear 118' 129 176 210 325 Sar 187 1 263 340 490 3116' 262 1 375 1 445 720 Table 9.8 Alternative Angle and Anchor Systems for Beams Table 9.9 Anchored to Walls, Uprights, or Carrier Beams Maximum Screw / Anchor Size Eximillon Type Size Description To Wall To Upright I Beam Angle 1' x 1' x 0.045• 3116• 910 A 1• r t• x 1/16' 0.063' 3116• 912 Angle 1" x i• x 1111`10.125") 3116• 012 Angle 1.12' x 1.12. 1/16.0.062• 114' 912 Angle 1.1/T x 1.12.3116.0.168• 1/4' 914 Angle 1.12' x 1.12. 118(0.062") 1146 914 Angle 1.314' x 1.314• x 1/e' 0.125- 1/4, 914 Angle T x 7 x 0.093• 318' 1 318• AMOS 2. Tx 118'0.125' 5116• 5116- Angle 7x 7x 3116'0.313' 1/r 12' U -channel 1-3/4'x 1.314' x 1-314"x 1/8' 318' N14 U-channal V x 2-116'x 1• x 0.050• 5116• 5116 7 -channel 1.12• x 2.118'x 1-12• x 0.043' Ill• #14 ote: I of screws t0 beam, wait, a p post equal tc pin of Seem Table 9.9 Minimum Anchor Size for Extrusions sit 010 #12 214• Wall Connection 311 - Extrusions Wall I Metal Upright Concrete Wood 1' x 10' 1/4• 914 1/4• 114' 2" x 9' 1/4• #14 114• 114' 2"x 6• 1/4• #12 I/4' #12 2' x 7" 3116' # 10 3116' 010 2" x 6' or less 3116• N8 11116' 08 Note: _..__. Wall, beam and upright minimum anchor sizes shall be used for super gutter connections. Table 9.10 Alternative Anchor Selection Factors for Anchor/ Screw Sizes Metal to Metal Anchor Size sit 010 #12 214• Still" 311 - so 1.00 0.80 0.58 046 0.27 0.21 010 0.50. 1.00 0.72 0.57 0.33 0.26 012 0.56 0.72 1.00 0.78 0.46 0.36 014 0.46 0.57 0.78 1.00 0.59 0.46 5116" 0.27 0.33 0.A6 0.59 1.000.79 718' 0.21 0.26 0.36 0.56 0.79 1.00 Alternative Anchor Selection Factors for Anchor I Screw Sizes Concrete and Wood Anchors (concrete screws: 2' maximum embedment) Anchor Size 3116" 114" 318" 3116" 1.00 0.83 0.50 114" 0.63 1.00 0.59 318" 0.50 0.59 1.00 Dyna Bolts (1.518' and 2414' embedment respectively) Anchor 116' 12' Size 3116• 1 1.00 0 All IIT 1 0.46 1.00 • Multiply the nut r of 08 spews x size of ander/xfew desired and found up to the next even number of screws. Example: It (10) 08 screws are required, the number of 010 spews desired is: 0.8x10=(8)010 PLpWs REVIE�� FORD CIN of Sj% 09.15-2004 J Q it Z � W O ZO U Cit U ZCOLLUZOW 00 C3F- m Q = W _ cn _1 H (n 00 W r l- a o 0 W -1 0 C,4 LL cr 0 Q U F- O � W W o _ Q QU Z CV D Q J Q W �^ /�• J N h J OLL¢� C:1_0`f C It WQ^141 Qi CO aa�too CO fix 'm UjW LJs o _j U.1CnZ J Odo Q) LL to 4 ci We WLL ZcvW 00CIO 0~ Wm a U � e6z-5� SEAL SHEET 1 OF ' 101